2,917
Views
6
CrossRef citations to date
0
Altmetric
Articles

Body-fin interference on the Magnus effect of spinning projectile in supersonic flows

, &
Pages 496-512 | Received 09 Oct 2016, Accepted 12 Apr 2017, Published online: 08 May 2017

References

  • Benton, E. R. (1962). Wing-Tail interference as a cause of “Magnus” effects on a finned missile. Journal of the Aerospace Sciences, 29, 1358–1367. doi: 10.2514/8.9813
  • Benton, E. R. (1964). Supersonic Magnus effect on a finned missile. AIAA Journal, 2, 153–155. doi: 10.2514/3.2252
  • Bhagwandin, V. A. (2012, June). Numerical prediction of roll damping and Magnus dynamic derivatives for finned projectiles at angle of attack. 30th AIAA applied aerodynamics conference, New Orleans, LA.
  • Cayzac, R., Carette, E., Denis, P., & Guillen, P. (2011). Magnus effect: Physical origins and numerical prediction. Journal of Applied Mechanics, 78, 051005-1–051005-7. doi: 10.1115/1.4004330
  • Curry, W. H., & Uselton, J. C. (1967, February–March). Some comments on the aerodynamic characteristics of the Tomahawk sounding rocket. Sounding rocket vehicle technology specialist conference, Williamsburg, VA.
  • DeRango, S., & Zingg, D. W. (1997). Improvements to a dual-time-stepping method for computing unsteady flows. AIAA Journal, 35, 1548–1550. doi: 10.2514/2.7485
  • Despirito, J., & Plostins, P. (2007, August). CFD prediction of M910 projectile aerodynamics: Unsteady wake effect on Magnus moment. AIAA atmospheric flight mechanics conference and exhibit, Hilton Head, SC.
  • Fletcher, C. A. J. (1972). Negative magnus forces in the critical reynolds number regime. Journal of Aircraft, 9, 826–834. doi: 10.2514/3.44343
  • Harmon, S. M. (1949). Stability derivatives at supersonic speeds of thin rectangular wings with diagonals ahead of tip Mach lines (NACA Technical Report 925). Langley Field, VA: Langley Aeronautical Lab.
  • Hu, P., Li, Y. L., Han, Y., Steve, C. S., & Xu, X. Y. (2016). Numerical simulations of the mean wind speeds and turbulence intensities over simplified gorges using the SST k-omega turbulence model. Engineering Applications of Computational Fluid Mechanics, 10, 361–374. doi: 10.1080/19942060.2016.1169947
  • Jenke, L. M. (1976). Experimental roll-damping, Magnus, and static-stability characteristics of two slender missile configurations at high angles of attack (0 to 90 deg) and Mach Numbers 0.2 through 2.5 (AEDC-TR-76-58). Springfield, VA: National Technical Information Service.
  • Klatt, D., Hruschka, R., & Leopold, F. (2012, June). Numerical and experimental investigation of the Magnus effect in supersonic flows. 30th AIAA applied aerodynamics conference, New Orleans, LA.
  • Klatt, D., Hruschka, R., & Leopold, F. (2014). Investigation of the Magnus effect of a generic projectile at Mach 3 Up to 16 degrees angle of attack. Journal of Applied Mechanics, 80, 031603-1–031603-9. doi: 10.1115/1.4023434
  • Menter, F. R. (1994). Two-Equation Eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32, 1598–1605. doi: 10.2514/3.12149
  • Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., & Volker, S. (2004a). A correlation-based transition model using local variables—Part I: Model formulation. Journal of Turbomachinery, 128, 413–422. doi: 10.1115/1.2184352
  • Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., & Volker, S. (2004b). A correlation-based transition model using local variables, Part 2 – test cases and industrial applications. Journal of Turbomachinery, 128, 423–434. doi: 10.1115/1.2184353
  • Nietubicz, C. J., & Opalka, K. O. (1980). Supersonic wind tunnel measurements of static and Magnus aerodynamic coefficients for projectile shapes with Tangent and Secant Ogive Noses (Memorandum Report ARBRL-MR-02991). Aberdeen Proving Ground, ME: Ballistic Research Laboratory.
  • Oberkampf, W. L., & Nicolaides, J. D. (1971). Aerodynamics of finned missiles at high angle of attack. AIAA Journal, 9, 2378–2384. doi: 10.2514/3.50043
  • Pandya, S. A., Venkateswaran, S., & Pulliam, T. H. (2003, January). Implementation of preconditioned dual-time procedures in overflow. 41st aerospace science meeting and exhibit, Reno, NV.
  • Pechier, M., Guillen, P., & Cayzac, R. (2001). Magnus effect over finned projectiles. Journal of Spacecraft and Rockets, 38, 542–549. doi: 10.2514/2.3714
  • Platou, A. S. (1965). Magnus characteristics of finned and nonfinned projectiles. AIAA Journal, 3, 83–90. doi: 10.2514/3.2791
  • Seginer, A., & Rosenwasser, I. (1986). Magnus effects on spinning transonic finned missiles. Journal of Spacecraft and Rockets, 23, 31–38. doi: 10.2514/3.25080
  • Seyfert, C., & Krumbein, A. (2012, January). Correlation-based transition transport modeling for three-dimensional aerodynamic configurations. 50th AIAA aerospace sciences meeting, Nashville, TN.
  • Shih, T. -H., Liou, W. W., Shabbir, A., Yang, Z. G., & Zhu, J. (1995). A New k−ε Eddy viscosity model for high Reynolds number turbulence flows. Computers & Fluids, 24, 227–238. doi: 10.1016/0045-7930(94)00032-T
  • Silton, S. I. (2005). Navier-Stokes computations for a spinning projectile from subsonic to supersonic speeds. Journal of Spacecraft and Rockets, 42, 223–231. doi: 10.2514/1.4175
  • Simon, F., Deck, S., Guillen, P., Merlen, A., & Cayzac, R. (2009). Numerical simulation of Magnus force control for projectiles configurations. Computers & Fluids, 38, 965–968. doi: 10.1016/j.compfluid.2008.09.006
  • Spalart, P. R., & Allmaras, S. R. (1992, January). A one-equation turbulence model for aerodynamic flows. 30th aerospace sciences meeting & exhibit, Reno, NV.
  • Sturek, W. B., Dwyer, H., Kayser, L., Nietubicz, J., Reklis, P., & Opalka, O. (1978). Computations of Magnus effects for a yawed, spinning body of revolution. AIAA Journal, 16, 687–692. doi: 10.2514/3.7566
  • Zhang, J. X., Wang, X. K., Liang, D. F., & Liu, H. (2015). Application of detached-eddy simulation to free surface flow over dunes. Engineering Applications of Computational Fluid Mechanics, 9, 556–566. doi: 10.1080/19942060.2015.1092269