2,209
Views
4
CrossRef citations to date
0
Altmetric
Articles

Macroscopic particle method for channel flow over porous bed

&
Pages 13-27 | Received 16 Oct 2016, Accepted 15 May 2017, Published online: 14 Jun 2017

References

  • Alazmi, B., & Vafai, K. (2001). Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. International Journal of Heat and Mass Transfer, 44, 1735–1749. doi: 10.1016/S0017-9310(00)00217-9
  • Beavers, G. S., & Joseph, D. D. (1967). Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 30, 197–207. doi: 10.1017/S0022112067001375
  • Breugem, W. P., Boersma, B. J., & Uittenbogaard, R. E. (2006). The influence of wall permeability on turbulent channel flow. Journal of Fluid Mechanics, 562, 35–72. doi: 10.1017/S0022112006000887
  • Chan, H. C., Huang, W. C., Leu, J. M., & Lai, C. J. (2007). Macroscopic modeling of turbulent flow over a porous medium. International Journal of Heat and Fluid Flow, 28, 1157–1166. doi: 10.1016/j.ijheatfluidflow.2006.10.005
  • Chen, X., & Chiew, Y. (2004). Velocity distribution of turbulent open-channel flow with bed suction. Journal of Hydraulic Engineering, 130, 140–148. doi: 10.1061/(ASCE)0733-9429(2004)130:2(140)
  • Colagrossi, A., & Landrini, M. (2003). Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 191(2), 448–475. doi: 10.1016/S0021-9991(03)00324-3
  • Delft3D WL|delft hydraulics. (2001). User manual Delft3D-FLOW, Delft3D-WAQ and Delft3D-PART. Delft: WL|delft hydraulics.
  • Deresiewicz, H., & Skalak, R. (1963). On uniqueness in dynamic poroelasticity. Bulletin of the Seismological Society of America, 53, 783–788.
  • Dey, S., Sarkar, S., Bose, S. K., Tait, S., & Castro-orgaz, O. (2011). Wall-Wake flows downstream of a sphere placed on a plane rough wall. Journal of Hydraulic Engineering, 137(10), 2005–2010. doi: 10.1061/(ASCE)HY.1943-7900.0000441
  • Federico, I. (2010). Simulating open-channel flows and advective diffusion phenomena through SPH model ( Phd thesis). Università della Calabria.
  • Fluent Inc. (1998). Fluent user’s guide, version 5.0. New Hampshire: Fluent Inc.
  • Fu, L., & Jin, Y.-C. (2013). A mesh-free method boundary condition technique in open channel flow simulation. Journal of Hydraulic Research, 51(2), 174–185. doi: 10.1080/00221686.2012.745455
  • Fu, L., & Jin, Y.-C. (2014). Simulating velocity distribution of dam breaks with the particle method. Journal of Hydraulic Engineering, 140(10), 1–10. doi: 10.1061/(ASCE)HY.1943-7900.0000915
  • Fumoto, Y., Liu, R., Sano, Y., & Huang, X. (2012). A three-dimensional numerical model for determining the pressure drops in porous media consisting of obstacles of different sizes. The Open Transport Phenomena Journal, 4, 1–8. doi: 10.2174/1877729501204010001
  • Gotoh, H., Shibahara, T., & Sakai, T. (2001). Sub-particle-scale turbulence model for the MPS method—Lagrangian flow model for hydraulic engineering. Computational Fluid Dynamics Journal, 9(4), 339–347.
  • Gui, Q., Dong, P., Shao, S., & Chen, Y. (2015). Incompressible SPH simulation of wave interaction with porous structure. Ocean Engineering, 110(A), 126–139. doi: 10.1016/j.oceaneng.2015.10.013
  • Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8, 2182–2189. doi: 10.1063/1.1761178
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. doi: 10.1016/0021-9991(81)90145-5
  • Huang, C.-J., Chang, H.-H., & Hwung, H.-H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering, 49, 1–24. doi: 10.1016/S0378-3839(03)00034-6
  • Jambhekar, V. A. (2011). Forchheimer porous-media flow models – numerical investigation and comparison with experimental data (Master’s thesis). Universität Stuttgart.
  • Jiang, F., Oliveira, M. S. A., & Sousa, A. C. M. (2007). Mesoscale SPH modeling of fluid flow in isotropic porous media. Computer Physics Communications, 176(7), 471–480. doi: 10.1016/j.cpc.2006.12.003
  • Kondo, M., & Koshizuka, S. (2011). Improvement of stability in moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 65(6), 638–654. doi: 10.1002/fld.2207
  • Koshizuka, S., & Oka, Y. (1996). Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123, 421–434.
  • Koshizuka, S., Tamako, H., & Oka, Y. (1995). A particle method for incompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics Journal, 4, 29–46.
  • Kunz, P., Zarikos, I. M., Karadimitriou, N. K., Huber, M., Nieken, U., & Hassanizadeh, S. M., (2016). Study of multi-phase flow in porous media: Comparison of SPH simulations with micro-model experiments. Transport in Porous Media, 114(2), 581–600. doi: 10.1007/s11242-015-0599-1
  • Lage, J. L. (1998). The fundamental theory of flow through permeable media: From Darcy to turbulence. In D. B. Ingham and I. Pop (Eds.), Transport phenomena in porous media (pp. 1–30). Oxford, UK: Elsevier Science.
  • Leu, J. M., Chan, H. C., Tu, L.-F., Jia, Y., & Wang, S. Y. (2009). Velocity distribution of non-darcy flow in a porous medium. Journal of Mechanics, 25(1), 49–58. doi: 10.1017/S1727719100003592
  • Li, B. (1990). Characteristics of flow in rough channels with permeable bed. Proceedings of 7th congress APD-IAHR, Chinese Association for Hydraulic Research, Beijing, 1–7.
  • Liu, G. R., & Liu, M. B. (2003). Smoothed particle hydrodynamics a Meshfree particle method. New Jersey, USA: World Scientific Publishing Company.
  • Manes, C., Pokrajac, D., McEwan, I., & Nikora, V. (2009). Turbulence structure of open channel flows over permeable and impermeable beds: A comparative study. Physics of Fluids, 21, 207. doi: 10.1063/1.3276292
  • Miglio, E., Quarteroni, A., & Saleri, F. (2003). Coupling of free surface and groundwater flows. Computers & Fluids, 32, 73–83. doi: 10.1016/S0045-7930(01)00102-5
  • Monaghan, J. J., & Gingold, R. A. (1983). Shock simulation by the particle method SPH. Journal of Computational Physics, 52, 374–389. doi: 10.1016/0021-9991(83)90036-0
  • Nakamura, Y., & Stefan, H. G. (1994). Effect of flow velocity on sediment oxygen demand: Theory. Journal of Hydraulic Engineering, 120(5), 996–1016.
  • Nazari, F., Jin, Y.-C., & Shakibaeinia, A. (2012). Numerical analysis of jet and submerged hydraulic jump using moving particle semi-implicit method. Canadian Journal of Civil Engineering, 39(5), 495–505. doi: 10.1139/l2012-023
  • Neale, G., & Nader, W. (1974). Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium. The Canadian Journal of Chemical Engineering, 52, 475–478. doi: 10.1002/cjce.5450520407
  • Nikora, V. I., Goring, D. G., McEwan, I., & Griffiths, G. (2001). Spatially averaged open-channel flow over rough Bed. Journal of Hydraulic Engineering, 127(2), 123–133. doi: 10.1061/(ASCE)0733-9429(2001)127:2(123)
  • Nikora, V. I., McEwan, I., McLean, S., Coleman, S., Pokrajac, D., & Walters, R. (2007). Double-averaging concept for rough-bed open-channel and overland flows: Theoretical back-ground. Journal of Hydraulic Engineering, 133(8), 873–883. doi: 10.1061/(ASCE)0733-9429(2007)133:8(873)
  • Ochoa-Tapia, J. A., & Whitaker, S. (1995). Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development. International Journal of Heat and Mass Transfer, 38, 2635–2646. doi: 10.1016/0017-9310(94)00346-W
  • Pahar, G., & Dhar, A. (2016). Modeling free-surface flow in porous media with modified incompressible SPH. Engineering Analysis with Boundary Elements, 68, 75–85. doi: 10.1016/j.enganabound.2016.04.001
  • Pedras, M. H. J., & de Lemos, M. J. S. (2001). Macroscopic turbulence modeling for incompressible flow through undeformable porous media. International Journal of Heat and Mass Transfer, 44(6), 1081–1093. doi: 10.1016/S0017-9310(00)00202-7
  • Pokrajac, D., & Manes, C. (2009) Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres, Transport in Porous Media, 78(3), 367–383. doi: 10.1007/s11242-009-9339-8
  • Pokrajac, D., Manes, C., & McEwan, I. (2007). Peculiar mean velocity profiles within a porous bed of an open channel. Physics of Fluids, 19, 098–109. doi: 10.1063/1.2780193
  • Poulikakos, D., & Kazmierczak, M. (1987). Forced convection in a duct partially filled with a porous material. Journal of Heat Transfer, 109, 653–662. doi: 10.1115/1.3248138
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Section 17.6. Multistep, multivalue, and predictor-corrector methods. Numerical recipes: The art of scientific computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
  • Prinos, P., Sofialidis, D., & Keramaris, E. (2003). Turbulent flow over and within a porous Bed. Journal of Hydraulic Engineering, 129(9), 720–733. doi: 10.1061/(ASCE)0733-9429(2003)129:9(720)
  • Rudraiah, N. (1985). Coupled parallel flows in a channel and a bounding porous medium of finite thickness. Journal of Fluids Engineering, 107, 322–329. doi: 10.1115/1.3242486
  • Sahraoui, M., & Kaviany, M. (1992). Slip and no-slip velocity bound-ary conditions at interface of porous, plain media. International Journal of Heat and Mass Transfer, 35, 927–943. doi: 10.1016/0017-9310(92)90258-T
  • Shakibaeinia, A, & Jin, Y. C. (2010). A weakly compressible MPS method for modeling of open-boundary free-surface flow. International Journal for Numerical Methods in Fluids, 63, 1208–1232.
  • Shao, S. (2010). Incompressible SPH flow model for wave interactions with porous media. Coastal Engineering, 57(3), 304–316. doi: 10.1016/j.coastaleng.2009.10.012
  • Silva, R. A., & de Lemos, M. J. S. (2003). Numerical analysis of the stress jump interface condition for laminar flow over a porous layer. Numerical Heat Transfer, Part A: Applications, 43(6), 603–617. doi: 10.1080/10407780307351
  • Souto-Iglesias, A., Macià, F., González, L. M., & Cercos-Pita, J. L. (2013). On the consistency of MPS. Computer Physics Communications, 184(3), 732–745. doi: 10.1016/j.cpc.2012.11.009
  • Steinberger, N., & Hondzo, M. (1999). Diffusional mass transfer at sediment-water interface. Journal of Environmental Engineering, 125(2), 192–200. doi: 10.1061/(ASCE)0733-9372(1999)125:2(192)
  • Suga, K., Tominaga, S., Mori, M., & Kaneda, M. (2013). Turbulence characteristics in flows over solid and porous square ribs mounted on porous walls. Flow, Turbulence and Combustion, 91(1), 19–40. doi: 10.1007/s10494-013-9452-1
  • Svensson, U., & Rahm, L. (1991). Toward a mathematical model of oxygen transfer to and within bottom sediments. Journal of Geophysical Research: Oceans, 96, 2777–2783. doi: 10.1029/90JC02209
  • Trussell, R. R., & Chang, M. (1999). Review of flow through porous media as applied to head loss in water filters. Journal of Environmental Engineering, 125(11), 998–1006. doi: 10.1061/(ASCE)0733-9372(1999)125:11(998)
  • Vollmera, S., Ramos, F. S., Daebel, H., & Kuhn, G. (2002). Micro scale exchange processes between surface and subsurface water. Journal of Hydrology, 269, 3–10. doi: 10.1016/S0022-1694(02)00190-7
  • Whitaker, S. (1986). Flow in porous media I: A theoretical derivation of Darcy’s law. Dordrecht, Holland: D. Riedel publishing company.
  • Wu, W., & Wang, S. S. Y. (2006). Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering, 132(8), 858–862. doi: 10.1061/(ASCE)0733-9429(2006)132:8(858)
  • Yen, B. C. (1991). Hydraulic resistance in channels: Channel flow resistance: Centennial of manning’s formula. Littleton, CO: Water Resources Publications, 1–135.
  • Zarrati, A. R., Tamai, N., & Jin, Y. C. (2005). Mathematical modeling of meandering channels with a generalized depth averaged model. Journal of Hydraulic Engineering, 131(6), 467–475. doi: 10.1061/(ASCE)0733-9429(2005)131:6(467)
  • Zeng, Z., & Grigg, R. (2006). A criterion for non-Darcy flow in porous media. Transport in Porous Media, 63(1), 57–69. doi: 10.1007/s11242-005-2720-3
  • Zippe, H. J., & Graf, W. H. (1983). Turbulent boundary-layer flow over permeable and non-permeable rough surfaces. Journal of Hydraulic Research, 21, 51–65. doi: 10.1080/00221688309499450