1,897
Views
5
CrossRef citations to date
0
Altmetric
Articles

Numerical study of the influence of rib orientation on heat transfer enhancement in two-pass ribbed rectangular channel

, , & ORCID Icon
Pages 117-136 | Received 19 Sep 2016, Accepted 23 Jul 2017, Published online: 24 Aug 2017

  • Al-Hadhrami, L., & Han, J. (2003). Effect of rotation on heat transfer in two-pass square channels with five different orientations of 45° angled rib turbulators. International Journal of Heat and Mass Transfer, 46(4), 653–669. doi: 10.1016/S0017-9310(02)00325-3
  • Chandra, P. R., & Han, J. C. (1989). Pressure drop and mass transfer in two-pass ribbed channels. Journal of Thermophysics and Heat Transfer, 3(3), 315–320. doi: 10.2514/3.28787
  • Chanteloup, D., Juaneda, Y., & Bölcs, A. (2002). Combined 3-D flow and heat transfer measurements in a 2-pass internal coolant passage of gas turbine airfoils. Journal of Turbomachinery, 124(4), 710–718. doi: 10.1115/1.1506176
  • Ekkad, S. V., & Han, J. C. (1997). Detailed heat transfer distributions in two-pass square channels with rib turbulators. International Journal of Heat and Mass Transfer, 40(11), 2525–2537. doi: 10.1016/S0017-9310(96)00318-3
  • Elfert, M., Schroll, M., & Forster, W. (2012). PIV measurement of secondary flow in a rotating Two-pass cooling system with an improved sequencer technique. Journal of Turbomachinery, 134, 0310013. doi: 10.1115/1.4003222
  • Erelli, R., Saha, A. K., & Panigrahi, P. K. (2015). Influence of turn geometry on turbulent fluid flow and heat transfer in a stationary two-pass square duct. International Journal of Heat and Mass Transfer, 89, 667–684. doi: 10.1016/j.ijheatmasstransfer.2015.05.081
  • Gao, T., Zhu, J., Liu, C., & Xu, J. (2016). Numerical study of conjugate heat transfer of steam and Air in high aspect ratio rectangular ribbed cooling channel. Journal of Mechanical Science and Technology, 30(3), 1431–1442. doi: 10.1007/s12206-016-0251-1
  • Gee, D. L., & Webb, R. L. (1980). Forced convection heat transfer in helically rib-roughened tubes. International Journal of Heat and Mass Transfer, 23(8), 1127–1136. doi: 10.1016/0017-9310(80)90177-5
  • Han, J. C., Dutta, S., & Ekkad, S. (2012). Gas turbine heat transfer and cooling technology (2nd ed.). Boca Raton: CRC Press.
  • Han, J. C., & Zhang, P. (1991). Effect of rib-angle orientation on local mass transfer distribution in a three-pass rib-roughened channel. Journal of Turbomachinery, 113(1), 123–130. doi: 10.1115/1.2927730
  • Ibaraki, S., Furukawa, M., Iwakiri, K., & Takahashi, K. (2007). Vortical flow structure and loss generation process in a transonic centrifugal compressor impeller. Paper presented at the proceedings of the ASME turbo expo 2007, Montreal, Canada.
  • Jang, Y. J., Chen, H. C., & Han, J. C. (2001). Computation of flow and heat transfer in two-pass channels with 60 deg ribs. Journal of Heat Transfer, 123(3), 563–575. doi: 10.1115/1.1371931
  • Jenkins, S. C., Zehnder, F., Shevchuk, I. V., von Wolfersdorf, J., Weigand, B., Schnieder, M. (2013). The effects of ribs and tip wall distance on heat transfer for a varying aspect ratio two-pass ribbed internal cooling channel. Journal of Turbomachinery, 135, 0210012.
  • Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–94. doi: 10.1017/S0022112095000462
  • Kubacki, S., Rokocki, J., & Dick, E. (2014). Hybrid RANS/LES of flow in a rib-roughened rotating channel. Paper presented at the Proceedings of ASME Turbo Expo 2014, Dusseldorf, Germany.
  • Laramee, R. S., Erlebacher, G., Garth, C., Schafhitzel, T., Theisel, H., Tricoche, X., Weiskopf, D. (2008). Applications of texture-based flow visualization. Engineering Applications of Computational Fluid Mechanics, 2(3), 264–274. doi: 10.1080/19942060.2008.11015227
  • Lei, J., Li, S., Han, J., Zhang, L., & Moon, H. (2013). Heat transfer in rotating multipass rectangular ribbed channel with and without a turning vane. Journal of Heat Transfer, 135(4), 041903. doi: 10.1115/1.4023040
  • Mochizuki, S., Murata, A., & Fukunaga, M. (1997). Effects of rib arrangements on pressure drop and heat transfer in a rib-roughened channel with a sharp 180 deg turn. Journal of Turbomachinery, 119(3), 610–616. doi: 10.1115/1.2841165
  • Saha, K., & Acharya, S. (2013). Effect of bend geometry on heat transfer and pressure drop in a two-pass coolant square channel for a turbine. Journal of Turbomachinery, 135(2), 319–329.
  • Sahner, J., Weinkauf, T., & Hege, H. (2005). Galilean invariant extraction and iconic representation of vortex core lines. Paper presented at the EUROGRAPHICS – IEEE VGTC symposium on visualization, Berlin, Germany.
  • Siddique, W., Shevchuk, I. V., El-Gabry, L., Hushmandi, N. B., & Fransson, T. H. (2013). On flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular channel with ribs at 45°. Heat and Mass Transfer, 49(5), 679–694. doi: 10.1007/s00231-013-1111-5
  • Škerlavaj, A., Škerget, L., Ravnik, J., & Lipej, A. (2014). Predicting free-surface vortices with single-phase simulations. Engineering Applications of Computational Fluid Mechanics, 8(2), 193–210. doi:doi: 10.1080/19942060.2014.11015507
  • Walker, D., & Zausner, J. (2007). RANS evaluations of internal cooling passage geometries: Ribbed passages and a 180 degree bend. Paper presented at the ASME turbo expo 2007, Montreal, Canada.
  • Yang, S., Han, J., Azad, S., & Lee, C. (2015). Heat transfer in rotating serpentine coolant passage with ribbed walls at low Mach numbers. Journal of Thermal Science and Engineering Applications, 7(1), 11013. doi: 10.1115/1.4028905
  • Zhao, Y. C., & Tao, Q. W. (1997). Effect of rib angle orientation on local mass transfer distribution around sharp 180 deg turn with rib-turbulators mounted in entire two-pass channels. Heat and Mass Transfer, 32(5), 325–332. doi: 10.1007/s002310050129
  • Zhu, J., Gao, T., Li, J., Li, G., & Gong, J. (2015). Numerical investigation of secondary flow vortex core structure in the two-pass rectangular channel with 45° ribs. Paper presented at the proceedings of ASME turbo expo 2015, Montreal, Canada.