1,510
Views
6
CrossRef citations to date
0
Altmetric
Articles

Numerical investigations of the flow induced oscillation of a torque converter

, &
Pages 270-281 | Received 14 Aug 2017, Accepted 15 Dec 2017, Published online: 05 Feb 2018

References

  • Anup, K. C., Thapa, B., & Lee, Y. H. (2014). Transient numerical analysis of rotor–stator interaction in a Francis turbine. Renewable Energy, 65(8), 227–235.
  • Browarzik V. (1994, June). Experimental investigation of rotor/rotor interaction in a hydrodynamic torque converter using hot-film anemometry. Proceedings of the 39th international gas turbine and aeroengine congress and exposition, The Hague, The Netherlands (pp. 13–16).
  • Brun, K., & Flack, R. D. (1997). Laser velocimeter measurements in the turbine of an automotive torque converter: Part II – Unsteady measurements. Journal of Turbomachinery, 119(3), 655–662. doi: 10.1115/1.2841171
  • By, R. R., & Lakshminarayana, B. (1995a). Measurement and analysis of static pressure field in a torque converter pump. Journal of Fluids Engineering, 117(1), 109–115. doi: 10.1115/1.2816798
  • By, R. R., & Lakshminarayana, B. (1995b). Measurement and analysis of static pressure field in a torque converter turbine. Journal of Fluids Engineering, 117(3), 473–478. doi: 10.1115/1.2817286
  • Campbell, R. L., & Paterson, E. G. (2011). Fluid–structure interaction analysis of flexible turbomachinery. Journal of Fluids and Structures, 27, 1376–1391. doi: 10.1016/j.jfluidstructs.2011.08.010
  • Conrad P., Weber W., & Jung, A. (2017). Deep part load flow analysis in a Francis model turbine by means of two-phase unsteady flow simulations. Journal of Physics: Conference Series, 813, 1, Paper No. 012027. doi: 10.1088/1742-6596/813/1/012027.
  • Degand, C., & Farhat, C. (2002). A three-dimensional torsional spring analogy method for unstructured dynamic meshes. Computers & Structures, 80, 305–316. doi: 10.1016/S0045-7949(02)00002-0
  • Dong, Y., Korivi, V., Attibele, P., & Yuan, Y. (2002). Torque converter CFD engineering: Part I – Torque ratio and K factor improvement through stator modifications. SAE Technical Paper. Society of Automotive Engineers. doi: 10.4271/2002-01-0883.
  • Dong, Y., & Lakshminarayana, B. (2001). Rotating probe measurements of the pump passage flow field in an automotive torque converter. Journal of Fluids Engineering, 123(1), 81–91. doi: 10.1115/1.1341202
  • Dong, Y., Lakshminarayana, B., & Maddock, D. (1998). Steady and unsteady flow field at pump and turbine exits of a torque converter. Journal of Fluids Engineering, 120(3), 538–548. doi: 10.1115/1.2820696
  • Franke, G., Powell, C., Fisher, R., Seidel, U., & Koutnik, J. (2005). On pressure mode shapes arising from rotor/stator interactions. Sound and Vibration, 39, 14–18.
  • Huang, X., Oram, C., & Sick, M. (2014). Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement. IOP Conference Series: Earth and Environmental Science, 22(3), Paper Number 032052. doi:doi: 10.1088/1755-1315/22/3/032052.
  • Kowalski D., Anderson, C., & Blough, J. (2005). Cavitation detection in automotive torque converters using nearfield acoustical measurements (SAE Technical Paper 2005-01-2516). Society of Automotive Engineers. doi: 10.4271/2005-01-2516.
  • Kraus, S. O., Flack, R., Habsieger, A., Gillies, G. T., & Dullenkopf, K. (2005). Periodic velocity measurements in a wide and large radius ratio automotive torque converter at the pump/turbine interface. Journal of Fluids Engineering, 127(2), 308–316. doi: 10.1115/1.1891150
  • Liu, Y. F., Lakshminarayana, B., & Burningham, J. (2001). Flow field in the turbine rotor passage in an automotive torque converter based on the high frequency response rotating five-hole probe measurement: Part I – Flow field at the design condition (speed ratio 0.6). International Journal of Rotating Machinery, 7(4), 253–269. doi: 10.1155/S1023621X01000227
  • Liu, C., Liu, C., & Ma, W. (2015). RANS, detached eddy simulation and large eddy simulation of internal torque converters flows: A comparative study. Engineering Applications of Computational Fluid Mechanics, 9(1), 114–125. doi:doi: 10.1080/19942060.2015.1004814.
  • Liu, C., Untaroiu, A., Wood, H. G., Yan, Q., & Wei, W. (2015). Parametric analysis and optimization of inlet deflection angle in torque converters. Journal of Fluids Engineering, 137(3), 03411. doi:doi: 10.1115/1.4028596.
  • Liu, C., Wei, W., Yan, Q., & Weaver, B. K. (2017). Torque converter capacity improvement through cavitation control by design. Journal of Fluids Engineering, 139(4), 041103:1–8. doi:doi: 10.1115/1.4035299.
  • Marathe, B. V., Lakshminarayana, B., & Maddock, D. G. (1997). Experimental investigation of steady and unsteady flow field downstream of an automotive torque converter turbine and inside the stator: Part II – Unsteady pressure on the stator blade surface. Journal of Turbomachinery, 119(3), 624–633. doi: 10.1115/1.2841168
  • Morris, C. E., O'Doherty, D. M., O'Doherty, T., & Mason-Jones, A. (2016). Kinetic energy extraction of a tidal stream turbine and its sensitivity to structural stiffness attenuation. Renewable Energy, 88, 30–39. doi: 10.1016/j.renene.2015.10.037
  • Pei, J., Dohmen, H. J., Yuan, S. Q., & Benra, F. K. (2012). Investigation of unsteady flow-induced impeller oscillations of a single-blade pump under off-design conditions. Journal of Fluids and Structures, 35, 89–104. doi: 10.1016/j.jfluidstructs.2012.08.005
  • Rodriguez, C. G., Egusquiza, E., & Santos, I. F. (2007). Frequencies in the vibration induced by the rotor stator interaction in a centrifugal pump turbine. Journal of Fluids Engineering, 129(11), 1428–1435. doi:doi: 10.1115/1.2786489.
  • Spence, R., & Amaral-Teixeira, J. (2009). A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump. Computers & Fluids, 38(6), 1243–1257. doi: 10.1016/j.compfluid.2008.11.013
  • Trivedi, C., Agnalt, E., & Dahlhaug, O. G. (2017). Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation. Renewable Energy, 133, 397–410. doi: 10.1016/j.renene.2017.06.005
  • Trivedi, C., & Cervantes, M. J. (2017). Fluid–structure interactions in Francis turbines: A perspective review. Renewable and Sustainable Energy Reviews, 68, 87–101. doi: 10.1016/j.rser.2016.09.121
  • Wang, L., Quant, R., & Kolios, A. (2016). Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. Journal of Wind Engineering and Industrial Aerodynamics, 158, 11–25. doi: 10.1016/j.jweia.2016.09.006
  • Zhang, L., Guo, Y., & Wang, W. (2007). Large eddy simulation of turbulent flow in a true 3D Francis hydro turbine passage with dynamical fluid–structure interaction. International Journal for Numerical Methods in Fluids, 54(5), 517–541. doi: 10.1002/fld.1408