3,525
Views
15
CrossRef citations to date
0
Altmetric
Articles

Design criteria for a type of asymmetric orifice in a surge tank using CFD

ORCID Icon & ORCID Icon
Pages 397-410 | Received 07 Nov 2017, Accepted 20 Feb 2018, Published online: 15 Mar 2018

References

  • Adam, N. J. (2017). Characterization of hydraulic behavior of orifices in conduits (Doctoral dissertation) Nr. 8090, EPFL ENAC LCH, Lausanne.
  • Adam, N. J., DeCesare, G., & Schleiss, A. J. (2018). Influence of geometrical parameters on the head losses of standard orifice. Submitted to Journal of Hydraulic Research.
  • Adam, N., De Cesare, G., Nicolet, C., Billeter, P., Angermayr, A., Bernard, V., & Schleiss, A. (2018a). Design of a throttled surge tank for the refurbishment by power increase of a high head power plant. J. Hydraulic Eng. 144(2), 05017004. doi:doi: 10.1061/(ASCE)HY.1943-7900.0001404
  • Adam, N., De Cesare, G., & Schleiss, A. (2016a, June). Experimental assessment of head losses through elliptical and sharp-edged orices sharp-edged orifices. In. Benjamin Dewals (Ed.), Proceedings of the 4th IAHR Europe Congress (pp. 947-952). Liege: CRC Press.
  • Adam, N., De Cesare, G., Schleiss, A., Richard, S., & Muench-Alligné, C. (2016b). Head loss coefficient through sharp-edged orifices. IOP conference series, 49(6), 062009SEP.
  • Adane, K. K., Ormiston, S. J., & Tachie, M. F. (2008). Numerical investigation of flow recirculation in a draft tube. J. Hydraulic Res., 46(1), 15–20. doi: 10.1080/00221686.2008.9521839
  • Alligne, S., Rodic, P., Arpe, J., Mlacnik, J., & Nicolet, C. (2014). Determination of Surge Tank Diaphragm Head Losses by CFD Simulations. Advances in Hydroinformatics, 325–336. doi: 10.1007/978-981-4451-42-0_27
  • Andersson, A. G., Andreasson, P., & Lundstrom, T. S. (2013). CFD-modelling and validation of free surface flow during spilling of reservoir in down-scale model. Engineering Applications of Comutational Fluid Mechanics, 7(1), 159–167. doi: 10.1080/19942060.2013.11015461
  • ASME, (2004). Measurement of Fluid Flow in Pipes Using Orifice, Nozzle, and Venturi. Standard, MFC-3M-2004.
  • Bermúdez, M., Cea, L., Puertas, J., Conde, A., Martín, A., & Baztán, J. (2012). Hydraulic model study of the intake-outlet of a pumped-storage hydropower plant. Engineering Applications of Computational Fluid Mechanics, 11(1), 483–495. doi: 10.1080/19942060.2017.1314869
  • Bonapace, P. (2012). Renewal of the pressure shaft and surge tank of the Kaunertal power station / Der Neubau des Kraftabstiegs und des Wasserschlosses für das Kaunertalkraftwerk. Geomechanik Tunnelbau, 5(5), 517–526. doi: 10.1002/geot.201200038
  • Büker, O., Lau, P., & Tawackolian, K. (2013). Reynolds number dependence of an orifice plate. Flow Measurement and Instrumentation, 30, 123–132. doi: 10.1016/j.flowmeasinst.2013.01.009
  • DeCesare, G., Schleiss, A., & Hermann, F. (2001). Impact of Turbidity Currents on Reservoir Sedimentation. J. Hydraulic Eng., 127(1), 6–16. doi: 10.1061/(ASCE)0733-9429(2001)127:1(6)
  • Edgar, R., Cochard, S., & Stachurski, Z. (2015). Double-layer orthogonal-offset photovoltaic platforms. Applied Energy, 147, 478–485. doi: 10.1016/j.apenergy.2015.03.002
  • EN, ISO (2003). Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. Standard, EN ISO 5167–3:2003.
  • Gabl, R. (2012). Numerische und physikalische Untersuchung des Verlustbeiwertes einer asymmetrischen Düse im Wasserschloss - Weiterentwicklung der numerischen Bemessungswerkzeuge für Hochdruckanlagen (Doctoral dissertation) University of Innsbruck, Innsbruck.
  • Gabl, R., Achleitner, S., Neuner, J., & Aufleger, M. (2014a). Accuracy analysis of a physical scale model using the example of an asymmetric orifice. Flow Measurement and Instrumentation, 36, 36–46. doi: 10.1016/j.flowmeasinst.2014.02.001
  • Gabl, R., Gems, B., Plörer, M., Klar, R., Gschnitzer, T., Achleitner, S., & Aufleger, M. (2014b). Numerical Simulations in Hydraulic Engineering. In G. Hofstetter (Ed.), ComputationalEngineering (pp. 195–224). Springer International Publishing.
  • Gabl, R., Innerhofer, D., Achleitner, S., Righetti, M., & Aufleger, M. (2018). Evaluation criteria for velocity distributions in front of bulb hydro turbines. Renewable Energy, 121, 745–756. doi: 10.1016/j.renene.2018.01.027.
  • Gabl, R., Seibl, J., Gems, B., & Righetti, M. (2017). Modellversuch und Numerik - Gegner oder Partner? [Numerics and scale model tests - opponents or partners?] WasserWirtschaft, 107(6)232–232.
  • Haakh, F. (2003). Vortex chamber diodes as throttle devices in pipe systems - Computation of transient flow. J. Hydraulic Res. 41(1), 53–59. doi: 10.1080/00221680309499928
  • Hannat, R., Weiss J., Garnier, F., & Morency, F. (2014). Application of The Dual Kriging Method for The Design of Hot-Air-Based Aircraft Wing Anti-Icing System. Engineering Applications of Computational Fluid Mechanics, 8(4), 530–548. doi: 10.1080/19942060.2014.11083305
  • Huber, B. (2010). Physikalischer Modelversuch und Cfd-Simulation einer asymmetrischen Drossel in einem T-Abzweigstück [Physical scale model test and CFD simulation for an asymmetrical throttle in a T-branch]. Osterr Wasser- und Abfallw, 62(34), 58–61. doi: 10.1007/s00506-010-0170-9
  • Idelchik, I. E. (1960). Handbook of Hydraulic Resistance Coefficients of Local Resistance and of Friction, U.S. Department of Commerce National Technical Information service (NTIS).
  • Jianhua, W., Wanzheng, A., & Qi, Z. (2010). Head loss coefficient of orifice plate energy dissipators. J. Hydraulic Res., 48(4), 526–530. doi: 10.1080/00221686.2010.507347
  • Kobus, H. (1978). Wasserbauliches Versuchswesen - Mitteilungsheft Nr.4. Essen : DVWW Deutscher Verband für Wasserwirtschaft - Arbeitsausschuß Wasserbauliches Versuchs- und Meßwesen.
  • Kobus, H. (1980). Hydraulic modelling. German association for water resources and land improvement, Bulletin 7. Hamburg: Parey.
  • Lakshmana, Rao, & Alvi, S. H. (1977). Critical Reynolds number for orifice and nozzle flows in pipes. J. Hydraulic Res., 15(2), 167–178. doi: 10.1080/00221687709499654
  • Li, X., & Brekke, H. (1989). Large amplitude water level oscillations in throttled surge tanks. J. Hydraulic Res., 27(4), 537–551. doi: 10.1080/00221688909499128
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. doi: 10.2514/3.12149
  • Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. In: Hanjalic, K., Nagano, Y., & Tummers, M. (Eds.), Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey.
  • Richter, W., Zenz, G., Schneider, J., & Knoblauch, H. (2015). Surge tanks for high head hydropower plants Hydraulic layout New developments. Geomechanik Tunnelbau, 1(8), 60–73. doi: 10.1002/geot.201400057
  • Roul, M., Dash, M., 2012). Single-phase and two-phase flow through thin and thick orifices in horizontal pipes. ASME. J. Fluids Eng., 134(9), 091301.–091301-14. doi: 10.1115/1.4007267
  • Seibl, J. (2016). Numerische und physikalische Untersuchung des hydraulischen Verhaltens von wandartigen Strukturen am Übergang von Druckstollen zu Druckschacht (Doctoral dissertation) University of Innsbruck, Innsbruck.
  • Seibl, J., Gabl R., Kröner C., & Aufleger, M. (2017). Alternativer hydraulischer Schutz des Triebwasserwegs Konzept, Modellversuch und numerische 3-D-Simulation [Alternative hydraulic protection of penstocks - Concept, scale model test and numerical 3D simulation]. WasserWirtschaft, 107(5), 36–41. doi: 10.1007/s35147-017-0070-z
  • Teran, L. A., & Larrahondo, F. J. (2016). Performance improvement of a 500-kW Francis turbine based on CFD. Renewable Energy, 96, 977–992. doi: 10.1016/j.renene.2016.05.044
  • Thoma, D. (1910). Zur Theorie des Wasserschlosses bei selbsttätig geregelten Turbinenanlagen. München: Oldenbourg.
  • Vereide, K., & Lia, L. (2015b). Surge Tank Research in Austria and Norway. WasserWirtschaft, 105(1), 58–62.
  • Vereide, K., Lia, L., & Nielsen, T. (2015a). Hydraulic scale modelling and thermodynamics of mass oscillations in closed surge tanks. J. Hydraulic Res., 53(4), 519–524. doi: 10.1080/00221686.2015.1050077
  • Vereide, K., Svingen, B., Nielsen, T. K., & Lia, L. (2017). The Effect of Surge Tank Throttling on Governor Stability, Power Control, and Hydraulic Transients in Hydropower Plants. IEEE Transactions on Energy Conversion, 32(1), 7727970, 91–98. doi: 10.1109/TEC.2016.2614829
  • Ye, F., Yang, X., & Wang, S. (1992). Turbine governing and surge-tank stability. J. Hydraulic Res., 30(1), 65–75. doi: 10.1080/00221689209498947
  • Yi, P., Huang, D., & Zheng, Z. (2017). The effect of variations in first- and second-order derivatives on airfoil aerodynamic performance. Engineering Applications of Computational Fluid Mechanics, 11(1), 54–68. doi: 10.1080/19942060.2016.1246264
  • Zhang, Q., & Chai, B. (2001). Hydraulic Characteristics of Multistage Orifice Tunnels. J. Hydraulic Eng., 127(8), 663–668. doi: 10.1061/(ASCE)0733-9429(2001)127:8(663)
  • Zhang, W., Zou, Z., & Ye, J. (2012). Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance. Applied Energy, 93, 655–667. doi: 10.1016/j.apenergy.2011.12.091
  • Zhao, P.-F., Liu, Y., Li, H.-K., Wang, X-F., & Yang, J.-G. (2016). The effect of impellerdiffuser interactions on diffuser performance in a centrifugal compressor. Engineering Applications of Computational Fluid Mechanics, 10(1), 565–577. doi: 10.1080/19942060.2016.1210028