11,356
Views
102
CrossRef citations to date
0
Altmetric
Review Articles

Computational intelligence approach for modeling hydrogen production: a review

ORCID Icon, , ORCID Icon, , &
Pages 438-458 | Received 17 Jan 2018, Accepted 10 Mar 2018, Published online: 28 Mar 2018

References

  • Aghbashlo, M., Hosseinpour, S., Tabatabaei, M., Younesi, H., & Najafpour, G. (2016). On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II). Energy, 96, 507–520. doi: 10.1016/j.energy.2015.12.084
  • Ainas, M., Hasnaoui, S., Bouarab, R., Abdi, N., Drouiche, N., & Mameri, N. (2017). Hydrogen production with the cyanobacterium Spirulina platensis. International Journal of Hydrogen Energy, 42(8), 4902–4907. doi: 10.1016/j.ijhydene.2016.12.056
  • Akbaş, H., Bilgen, B., & Turhan, A. M. (2015). An integrated prediction and optimization model of biogas production system at a wastewater treatment facility. Bioresource Technology, 196, 566–576. doi: 10.1016/j.biortech.2015.08.017
  • Al-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2018a). Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics, 35, 1–16. doi: 10.1016/j.aei.2017.11.002
  • Al-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2018b). Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Applied Energy, 0, 0. doi:10.1016/j.apenergy.2018.02.140
  • Argun, H., & Onaran, G. (2017). Effects of N/C, P/C and Fe/C ratios on dark fermentative hydrogen gas production from waste paper towel hydrolysate. International Journal of Hydrogen Energy, 42(22), 14990–15001. doi: 10.1016/j.ijhydene.2017.04.289
  • Bhattacharyya, R., Misra, A., & Sandeep, K. (2017). Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: Conceptual design and analysis. Energy Conversion and Management, 133, 1–13. doi: 10.1016/j.enconman.2016.11.057
  • Bornapour, M., & Hooshmand, R.-A. (2015). An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants. Energy, 83, 734–748. doi: 10.1016/j.energy.2015.02.082
  • Boudjemaa, A., Popescu, I., Juzsakova, T., Kebir, M., Helaili, N., Bachari, K., & Marcu, I.-C. (2016). M-substituted (M=Co, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction. International Journal of Hydrogen Energy, 41(26), 11108–11118. doi: 10.1016/j.ijhydene.2016.04.088
  • Cao, W., Cao, C., Guo, L., Jin, H., Dargusch, M., Bernhardt, D., & Yao, X. (2016). Hydrogen production from supercritical water gasification of chicken manure. International Journal of Hydrogen Energy, 41(48), 22722–22731. doi: 10.1016/j.ijhydene.2016.09.031
  • Casallas, C., Dincer, I., & Zamfirescu, C. (2016). Experimental investigation and analysis of a novel photo-electrochemical hydrogen production cell with polymeric membrane photocathode. International Journal of Hydrogen Energy, 41(19), 7968–7975. doi: 10.1016/j.ijhydene.2015.12.183
  • Castillo, P., Magnin, J.-P., Velasquez, M., & Willison, J. (2012). Modeling and optimization of hydrogen production by the photosynthetic bacterium Rhodobacter capsulatus by the methodology of design of experiments (DOE): interaction between lactate concentration and light luminosity. Energy Procedia, 29, 357–366. doi: 10.1016/j.egypro.2012.09.042
  • Cesar, D. V., Santori, G. F., Pompeo, F., Baldanza, M. A., Henriques, C. A., Lombardo, E., … Nichio, N. N. (2016). Hydrogen production from ethylene glycol reforming catalyzed by Ni and Ni–Pt hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 41(47), 22000–22008. doi: 10.1016/j.ijhydene.2016.07.168
  • Chang, P.-L., Hsu, C.-W., & Chang, P.-C. (2011). Fuzzy Delphi method for evaluating hydrogen production technologies. International Journal of Hydrogen Energy, 36(21), 14172–14179. doi: 10.1016/j.ijhydene.2011.05.045
  • Chen, C. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314–347. doi: 10.1016/j.ins.2014.01.015
  • Cong, T. Y., Raj, A., Chanaphet, J., Mohammed, S., Ibrahim, S., & Al Shoaibi, A. (2016). A detailed reaction mechanism for hydrogen production via hydrogen sulphide (H 2 S) thermolysis and oxidation. International Journal of Hydrogen Energy, 41(16), 6662–6675. doi: 10.1016/j.ijhydene.2016.03.053
  • Dahbi, S., Aboutni, R., Aziz, A., Benazzi, N., Elhafyani, M., & Kassmi, K. (2016). Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller. International Journal of Hydrogen Energy, 41(45), 20858–20866. doi: 10.1016/j.ijhydene.2016.05.111
  • Deo, R. C., Ghorbani, M. A., Samadianfard, S., Maraseni, T., Bilgili, M., & Biazar, M. (2018). Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data. Renewable Energy, 116, 309–323. doi: 10.1016/j.renene.2017.09.078
  • Deo, R. C., & Sahin, M. (2017). Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. Renewable and Sustainable Energy Reviews, 72, 828–848. doi: 10.1016/j.rser.2017.01.114
  • Deo, R. C., & & Samui, P. (2017). Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: Case study of Brisbane city. Journal of Hydrologic Engineering, 22(6), 05017003–05017015. doi: 10.1061/(ASCE)HE.1943-5584.0001506
  • Deo, R. C., Wen, X., & Feng, Q. (2016). A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Applied Energy, 168, 568–593. doi: 10.1016/j.apenergy.2016.01.130
  • Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954–1971. doi: 10.1016/j.ijhydene.2011.03.173
  • Dincer, I., & Joshi, A. S. (2013). Solar based hydrogen production systems. Oshawa: Springer.
  • Dožić, S., Lutovac, T., & Kalić, M. (in press). Fuzzy AHP approach to passenger aircraft type selection. Journal of Air Transport Management.
  • Ebtehaj, I., Bonakdari, H., Shamshirband, S., & Mohammadi, K. (2016). A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer. Flow Measurement and Instrumentation, 47, 19–27. doi: 10.1016/j.flowmeasinst.2015.11.002
  • El-Shafie, A. (2014). Neural network nonlinear modeling for hydrogen production using anaerobic fermentation. Neural Computing and Applications, 24(3-4), 539–547. doi: 10.1007/s00521-012-1268-8
  • ezzahra Chakik, F., Kaddami, M., & Mikou, M. (2017). Effect of operating parameters on hydrogen production by electrolysis of water. International Journal of Hydrogen Energy, 42(40), 25550–25557. doi: 10.1016/j.ijhydene.2017.07.015
  • Faizollahzadeh_Ardabili, S., Mahmoudi, A., & Mesri Gundoshmian, T. (2016). Modeling and simulation controlling system of HVAC using fuzzy and predictive (radial basis function, RBF) controllers. Journal of Building Engineering, 6, 301–308. doi: 10.1016/j.jobe.2016.04.010
  • Faizollahzadeh_Ardabili, B., Najafi, H., Ghaebi, S., Shamshirband, A., & Mostafaeipour. (2017). A novel enhanced exergy method in analysing HVAC system using soft computing approaches: A case study on mushroom growing hall. Journal of Building Engineering, 13, 309–318. doi: 10.1016/j.jobe.2017.08.008
  • Ferrandon, M. S., Lewis, M. A., Tatterson, D. F., Gross, A., Doizi, D., Croize, L., … Carles, P. (2010). Hydrogen production by the Cu–Cl thermochemical cycle: Investigation of the key step of hydrolysing CuCl 2 to Cu 2 OCl 2 and HCl using a spray reactor. International Journal of Hydrogen Energy, 35(3), 992–1000. doi: 10.1016/j.ijhydene.2009.09.086
  • Formato, R. (2007). Central force optimization: A new metaheuristic with applications in applied electromagnetics. Progress In Electromagnetics Research, 77, 425–491. doi: 10.2528/PIER07082403
  • Franco, S., Mandla, V. R., & Rao, K. R. M. (2017). Urbanization, energy consumption and emissions in the Indian context A review. Renewable and Sustainable Energy Reviews, 71, 898–907. doi: 10.1016/j.rser.2016.12.117
  • Gabbar, H. A., Hussain, S., & Hosseini, A. H. (2014). Simulation-based fault propagation analysis—application on hydrogen production plant. Process Safety and Environmental Protection, 92(6), 723–731. doi: 10.1016/j.psep.2013.12.006
  • Gholami, V., Chau, K., Fadaee, F., Torkaman, J., & Ghaffari, A. (2015). Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. Journal of Hydrology, 529, 1060–1069. doi: 10.1016/j.jhydrol.2015.09.028
  • Ghorbani, M. A., Deo, R. C., Yaseen, Z. M., Kashani, M. H., & Mohammad, B. (2017). Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran. Theoretical and Applied Climatology. DOI:doi: 10.1007/s00704-017-2244-0.
  • Ghorbani, M. A., Shamshirband, S., Haghi, D. Z., Azani, A., Bonakdari, H., & Ebtehaj, I. (2017). Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil and Tillage Research, 172, 32–38. doi: 10.1016/j.still.2017.04.009
  • Global, B. P. (2017, June). BP statistical review of world energy.
  • Gobara, H. M., Nassar, I. M., El Naggar, A. M., & Eshaq, G. (2017). Nanocrystalline spinel ferrite for an enriched production of hydrogen through a solar energy stimulated water splitting process. Energy, 118, 1234–1242. doi: 10.1016/j.energy.2016.11.001
  • Grigoriev, S., Pushkarev, A., Pushkareva, I., Millet, P., Belov, A., Novikov, V., … Voloshin, Y. (2017). Hydrogen production by proton exchange membrane water electrolysis using cobalt and iron hexachloroclathrochelates as efficient hydrogen-evolving electrocatalysts. International Journal of Hydrogen Energy, 42(46), 27845–27850. doi: 10.1016/j.ijhydene.2017.05.048
  • Hbaieb, K., Rashid, K., & Kooli, F. (2017). Hydrogen production by autothermal reforming of dodecane over strontium titanate based perovskite catalysts. International Journal of Hydrogen Energy, 42(8), 5114–5124. doi: 10.1016/j.ijhydene.2016.11.127
  • Heo, E., Kim, J., & Cho, S. (2012). Selecting hydrogen production methods using fuzzy analytic hierarchy process with opportunities, costs, and risks. International Journal of Hydrogen Energy, 37(23), 17655–17662. doi: 10.1016/j.ijhydene.2012.09.055
  • Hossain, M. A., Ayodele, B. V., Cheng, C. K., & Khan, M. R. (2016). Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe 2 O 4 catalysts. International Journal of Hydrogen Energy, 41(26), 11119–11130. doi: 10.1016/j.ijhydene.2016.04.034
  • Hosseini, S. E., & Wahid, M. A. (2016). Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews, 57, 850–866. doi: 10.1016/j.rser.2015.12.112
  • Hu, J., Zhang, Q., Jing, Y., & Lee, D.-J. (2016). Photosynthetic hydrogen production from enzyme-hydrolyzed micro-grinded maize straws. International Journal of Hydrogen Energy, 41(46), 21665–21669. doi: 10.1016/j.ijhydene.2016.07.029
  • Huang, S.-R., Chen, H.-T., Chung, C.-H., Wu, C.-C., Tsai, T.-Y., Chu, C.-Y., & Lin, C.-Y. (2012). Fermentative hydrogen production using a real-time fuzzy controller. International Journal of Hydrogen Energy, 37(20), 15575–15581. doi: 10.1016/j.ijhydene.2012.02.078
  • Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets and Systems, 55(3), 241–253. doi: 10.1016/0165-0114(93)90251-C
  • Jha, P., Kana, E., & Schmidt, S. (2017). Can artificial neural network and response surface methodology reliably predict hydrogen production and COD removal in an UASB bioreactor? International Journal of Hydrogen Energy, 42(30), 18875–18883. doi: 10.1016/j.ijhydene.2017.06.063
  • Kalantari, A., Kamsin, A., Shamshirband, S., Gani, A., Alinejad-Rokny, H., & Chronopoulos, A. T. (2017). Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions. Neurocomputing, 276, 2–22. doi: 10.1016/j.neucom.2017.01.126
  • Kannan, N., & Vakeesan, D. (2016). Solar energy for future world:-A review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. doi: 10.1016/j.rser.2016.05.022
  • Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582. doi: 10.1016/j.enzmictec.2005.09.015
  • Karaci, A., Caglar, A., Aydinli, B., & Pekol, S. (2016). The pyrolysis process verification of hydrogen rich gas (H–rG) production by artificial neural network (ANN). International Journal of Hydrogen Energy, 41(8), 4570–4578. doi: 10.1016/j.ijhydene.2016.01.094
  • Kennedy, J., & Optimization, R. E. P. S. (1995). Ieee int. Conf. on Neural Networks.
  • Khongkliang, P., Kongjan, P., Utarapichat, B., Reungsang, A., & Sompong, O. (2017). Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. International Journal of Hydrogen Energy, 42(45), 27584–27592. doi: 10.1016/j.ijhydene.2017.06.145
  • Kraussler, M., Binder, M., Schindler, P., & Hofbauer, H. (2016). Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification. Biomass and Bioenergy, 111, 320–329. doi: 10.1016/j.biombioe.2016.12.008
  • Kumar, K. A., Kumar, P. S., Madhusudanan, S., Pasupathy, V., Vignesh, P. R., & Sankaranarayanan, A. R. (2017). A simplified model for evaluating best biodiesel production method: Fuzzy analytic hierarchy process approach. Sustainable Materials and Technologies, 12, 18–22. doi: 10.1016/j.susmat.2017.03.002
  • Li, B., & Lu, L. (2017). Genetic-algorithm-based fault detection of the heat transfer process in nuclear-based hydrogen production based ON Cu–Cl cycle. International Journal of Hydrogen Energy, 42(6), 3863–3875. doi: 10.1016/j.ijhydene.2016.06.176
  • Lin, C.-Y., Leu, H.-J., & Lee, K.-H. (2016). Hydrogen production from beverage wastewater via dark fermentation and room-temperature methane reforming. International Journal of Hydrogen Energy, 41(46), 21736–21746. doi: 10.1016/j.ijhydene.2016.07.028
  • Mahmudul, H., Hagos, F., Mamat, R., Adam, A. A., Ishak, W., & Alenezi, R. (2017). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–A review. Renewable and Sustainable Energy Reviews, 72, 497–509. doi: 10.1016/j.rser.2017.01.001
  • Maran, J. P., & Priya, B. (2015). Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. Ultrasonics Sonochemistry, 23, 192–200. doi: 10.1016/j.ultsonch.2014.10.019
  • Monroy, I., Guevara-López, E., & Buitrón, G. (2016). A mechanistic model supported by data-based classification models for batch hydrogen production with an immobilized photo-bacteria consortium. International Journal of Hydrogen Energy, 41(48), 22802–22811. doi: 10.1016/j.ijhydene.2016.10.100
  • Mu, Y., & Yu, H.-Q. (2007). Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm. International Journal of Hydrogen Energy, 32(15), 3308–3314. doi: 10.1016/j.ijhydene.2007.05.021
  • Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M. Y., & Alimardani, F. (2012). Application of ANFIS to predict crop yield based on different energy inputs. Measurement, 45(6), 1406–1413. doi: 10.1016/j.measurement.2012.03.025
  • Najafi, B., Pirouzpanah, V., Ghobadian, B., & Sadeghpour, R. A. (2007). Experimental investigation of diesel engine performance parameters and pollution using biodiesel.
  • Najafi, B., Pirouzpanah, V., Najafi, G., Yusaf, T., & Ghobadian, B. (2007). Experimental investigation of performance and emission parameters of a small diesel engine using CNG and biodiesel.
  • Nakamura, N., Miyaoka, H., Ichikawa, T., & Kojima, Y. (2013). Hydrogen production via thermochemical water-splitting by lithium redox reaction. Journal of Alloys and Compounds, 580, S410–S413. doi: 10.1016/j.jallcom.2013.03.128
  • Naterer, G., Suppiah, S., Stolberg, L., Lewis, M., Wang, Z., Rosen, M., … Secnik, E. (2015). Progress in thermochemical hydrogen production with the copper–chlorine cycle. International Journal of Hydrogen Energy, 40(19), 6283–6295. doi: 10.1016/j.ijhydene.2015.02.124
  • Niknam, T., Bornapour, M., & Gheisari, A. (2013). Combined heat, power and hydrogen production optimal planning of fuel cell power plants in distribution networks. Energy Conversion and Management, 66, 11–25. doi: 10.1016/j.enconman.2012.08.016
  • Niknam, T., Bornapour, M., Ostadi, A., & Gheisari, A. (2013). Optimal planning of molten carbonate fuel cell power plants at distribution networks considering combined heat, power and hydrogen production. Journal of Power Sources, 239, 513–526. doi: 10.1016/j.jpowsour.2013.03.117
  • Niknam, T., Fard, A. K., & Baziar, A. (2012). Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants. Energy, 42(1), 563–573. doi: 10.1016/j.energy.2012.02.023
  • Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67, 597–611. doi: 10.1016/j.rser.2016.09.044
  • Noblecourt, A., Christophe, G., Larroche, C., & Fontanille, P. (2017). Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Bioresource Technology, 247, 864–870. doi: 10.1016/j.biortech.2017.09.199
  • Novák, V., Perfilieva, I., & Mockor, J. (2012). Mathematical principles of fuzzy logic. New York: Springer Science & Business Media.
  • O'Leary, D. E. (2013). Artificial intelligence and big data. IEEE Intelligent Systems, 28(2), 96–99. doi: 10.1109/MIS.2013.39
  • Pahlavan, R., Omid, M., & Akram, A. (2012). Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy, 37(1), 171–176. doi: 10.1016/j.energy.2011.11.055
  • Perna, A. (2007). Hydrogen from ethanol: Theoretical optimization of a PEMFC system integrated with a steam reforming processor. International Journal of Hydrogen Energy, 32(12), 1811–1819. doi: 10.1016/j.ijhydene.2006.08.058
  • Qureshy, A. M., Ahmed, M., & Dincer, I. (2016). Simulation of transport phenomena in a photo-electrochemical reactor for solar hydrogen production. International Journal of Hydrogen Energy, 41(19), 8020–8031. doi: 10.1016/j.ijhydene.2015.12.218
  • Rabbani, M., Dincer, I., & Naterer, G. (2016). Experimental investigation of hydrogen production in a photo-electrochemical chloralkali processes reactor. International Journal of Hydrogen Energy, 41(19), 7766–7781. doi: 10.1016/j.ijhydene.2016.01.143
  • Raheli, B., Aalami, M. T., El-Shafie, A., Ghorbani, M. A., & Deo, R. C. (2017). Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat river. Environmental Earth Sciences, 76(14), 503. doi:doi: 10.1007/s12665-017-6842-z
  • Rajeshwar, K., McConnell, R., & Licht, S. (2008). Solar hydrogen generation. Toward a renewable energy future. New York: Springer.
  • Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–lear-ning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315. doi: 10.1016/j.cad.2010.12.015
  • Rosales-Colunga, L. M., García, R. G., & Rodríguez, A. D. L. (2010). Estimation of hydrogen production in genetically modified E. Coli fermentations using an artificial neural network. International Journal of Hydrogen Energy, 35(24), 13186–13192. doi: 10.1016/j.ijhydene.2010.08.137
  • Rosenblatt, F. (1961). Principles of neurodynamics. Perceptrons and the theory of brain mechanisms. Buffalo, NY: Cornell Aeronautical Lab INC.
  • Saadi, A., Becherif, M., & Ramadan, H. (2016). Hydrogen production horizon using solar energy in Biskra, Algeria. International Journal of Hydrogen Energy, 41(47), 21899–21912. doi: 10.1016/j.ijhydene.2016.08.224
  • Saaty, T. L. (1980). The analytic hierarchy process: Planning. Priority setting. Resource allocation (p. 287). MacGraw-Hill, New York International Book Company.
  • Sahraei, O. A. Z., Larachi, F., Abatzoglou, N., & Iliuta, M. C. (2017). Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes. Applied Catalysis B: Environmental, 219, 183–193. doi: 10.1016/j.apcatb.2017.07.039
  • Salcedo-Sanz, S., Deo, R. C., Cornejo-Bueno, L., Camacho-Gómez, C., & Ghimire, S. (2018). An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the sunshine state of Australia. Applied Energy, 209, 79–94. doi: 10.1016/j.apenergy.2017.10.076
  • Sefeedpari, P., Rafiee, S., Akram, A., Chau, K.-w., & Pishgar-Komleh, S. H. (2016). Prophesying egg production based on energy consumption using multi-layered adaptive neural fuzzy inference system approach. Computers and Electronics in Agriculture, 131, 10–19. doi: 10.1016/j.compag.2016.11.004
  • Shabanian, S. R., Edrisi, S., & Khoram, F. V. (2017). Prediction and optimization of hydrogen yield and energy conversion efficiency in a non-catalytic filtration combustion reactor for jet A and butanol fuels. Korean Journal of Chemical Engineering, 34(8), 2188–2197. doi: 10.1007/s11814-017-0134-x
  • Shahbod, N., Mansouri, N., Bayat, M., Nouri, J., & Goddousi, J. (2017). A fuzzy analytic hierarchy process approach to identify and prioritize environmental performance indicators in hospitals. International Journal of Occupational Hygiene, 9(2), 66–77.
  • Shi, Y., Gai, G.-s., Zhao, X.-t., Zhu, J.-j., & Zhang, P. (2010). Back propagation neural network (BPNN) simulation model and influence of operational parameters on hydrogen bio-production through integrative biological reactor (IBR) treating wastewater. Bioinformatics and biomedical engineering (iCBBE), 2010 4th international conference on.
  • Singh, A., Vats, G., & Khanduja, D. (2016). Exploring tapping potential of solar energy: Prioritization of Indian states. Renewable and Sustainable Energy Reviews, 58, 397–406. doi: 10.1016/j.rser.2015.12.056
  • Sivagurunathan, P., Kumar, G., Kobayashi, T., Xu, K., & Kim, S.-H. (2017). Effects of various dilute acid pretreatments on the biochemical hydrogen production potential of marine macroalgal biomass. International Journal of Hydrogen Energy, 42(45), 27600–27606. doi: 10.1016/j.ijhydene.2017.05.106
  • Srivastava, N., Srivastava, M., Kushwaha, D., Gupta, V. K., Manikanta, A., Ramteke, P., & Mishra, P. (2017). Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresource Technology, 238, 552–558. doi: 10.1016/j.biortech.2017.04.077
  • Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems–a review. Renewable and Sustainable Energy Reviews, 48, 585–607. doi: 10.1016/j.rser.2015.04.037
  • Taormina, R., Chau, K.-W., & Sivakumar, B. (2015). Neural network river forecasting through baseflow separation and binary-coded swarm optimization. Journal of Hydrology, 529, 1788–1797. doi: 10.1016/j.jhydrol.2015.08.008
  • Tatar, A., Barati-Harooni, A., Partovi, M., Najafi-Marghmaleki, A., & Mohammadi, A. H. (2016). An accurate model for predictions of vaporization enthalpies of hydrocarbons and petroleum fractions. Journal of Molecular Liquids, 220, 192–199. doi: 10.1016/j.molliq.2016.04.069
  • Tebibel, H. (2017). Off grid PV system for hydrogen production using PEM methanol electrolysis and an optimal management strategy. International Journal of Hydrogen Energy, 42(30), 19432–19445. doi: 10.1016/j.ijhydene.2017.05.205
  • Thakur, A., Panigrahi, S., & Behera, R. (2016). A review on wind energy conversion system and enabling technology. Electrical Power and Energy Systems (ICEPES), International Conference on.
  • Thengane, S. K., Hoadley, A., Bhattacharya, S., Mitra, S., & Bandyopadhyay, S. (2014). Cost-benefit analysis of different hydrogen production technologies using AHP and fuzzy AHP. International Journal of Hydrogen Energy, 39(28), 15293–15306. doi: 10.1016/j.ijhydene.2014.07.107
  • Turner, J. A. (2004). Sustainable hydrogen production. Science, 305(5686), 972–974. doi: 10.1126/science.1103197
  • Vagia, E. C., Muradov, N., Kalyva, A., Ali, T., Qin, N., Srinivasa, A. R., & Kakosimos, K. E. (2017). Solar hybrid photo-thermochemical sulfur-ammonia water-splitting cycle: Photocatalytic hydrogen production stage. International Journal of Hydrogen Energy, 42(32), 20608–20624. doi: 10.1016/j.ijhydene.2017.06.210
  • Van de Krol, R., & Grätzel, M. (2012). Photoelectrochemical hydrogen production. Boston, MA: Springer.
  • Wang, W., Fan, L., & Wang, G. (2016). Study on chemical looping reforming of ethanol (CLRE) for hydrogen production using NiMn 2 O 4 spinel as oxygen carrier. Journal of the Energy Institute, 90(6), 884–892. doi: 10.1016/j.joei.2016.08.006
  • Wang, J., & Wan, W. (2009). Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. International Journal of Hydrogen Energy, 34(1), 255–261. doi: 10.1016/j.ijhydene.2008.10.010
  • Whiteman, J., & Kana, E. G. (2014). Comparative assessment of the artificial neural network and response surface modelling efficiencies for biohydrogen production on sugar cane molasses. BioEnergy Research, 7(1), 295–305. doi: 10.1007/s12155-013-9375-7
  • Woo, T. H. (2014). Modified fuzzy algorithm based safety analysis of nuclear energy for sustainable hydrogen production in climate change prevention. International Journal of Electrical Power & Energy Systems, 61, 192–196. doi: 10.1016/j.ijepes.2014.03.035
  • Yang, X.-S. (2010a). Nature-inspired metaheuristic algorithms. Frome, BA: Luniver press.
  • Yang, X.-S. (2010b). A new metaheuristic bat-inspired algo-rithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 284, 65–74. doi: 10.1007/978-3-642-12538-6_6
  • Yaseen, Z. M., Ghareb, M. I., Ebtehaj, I., Bonakdari, H., Siddique, R., Heddam, S., …  C, D. R. (2017). Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA. Water Resource Management, In Press.
  • Yeheskel, J., & Epstein, M. (2011). Thermolysis of methane in a solar reactor for mass-production of hydrogen and carbon nano-materials. Carbon, 49(14), 4695–4703. doi: 10.1016/j.carbon.2011.06.071
  • Yu, Z., Meng, J., Li, Y., & Li, Y. (2013). Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO 2 nanocomposite photocatalyst. International Journal of Hydrogen Energy, 38(36), 16649–16655. doi: 10.1016/j.ijhydene.2013.07.056
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi: 10.1016/S0019-9958(65)90241-X
  • Zhang, H., Du, C., Wu, A., Bo, Z., Yan, J., & Li, X. (2014). Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. International Journal of Hydrogen Energy, 39(24), 12620–12635. doi: 10.1016/j.ijhydene.2014.06.047