3,428
Views
101
CrossRef citations to date
0
Altmetric
Articles

Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine

, , , ORCID Icon, ORCID Icon &
Pages 517-534 | Received 22 Jan 2018, Accepted 01 May 2018, Published online: 18 Jun 2018

References

  • Abagnale, C., Cameretti, M. C., De Simio, L., Gambino, M., Iannaccone, S., & Tuccillo, R. (2014a). Combined numerical-experimental study of dual fuel diesel engine. Energy Procedia, 45, 721–730. doi: 10.1016/j.egypro.2014.01.077
  • Abagnale, C., Cameretti, M. C., De Simio, L., Gambino, M., Iannaccone, S., & Tuccillo, R. (2014b). Numerical simulation and experimental test of dual fuel operated diesel engines. Applied Thermal Engineering, 65(1–2), 403–417. doi: 10.1016/j.applthermaleng.2014.01.040
  • Arteconi, A., Brandoni, C., Evangelista, D., & Polonara, F. (2010). Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe. Applied Energy, 87(6), 2005–2013. doi: 10.1016/j.apenergy.2009.11.012
  • Barik, D., & Murugan, S. (2014). Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine. Energy Conversion and Management, 84, 217–226. doi: 10.1016/j.enconman.2014.04.042
  • Di Iorio, S., Magno, A., Mancaruso, E., & Vaglieco, B. M. (2016). Characterization of particle number and mass size distributions from a small compression ignition engine operating in diesel/methane dual fuel mode. Fuel, 180, 613–623. doi: 10.1016/j.fuel.2016.04.108
  • Di Iorio, S., Magno, A., Mancaruso, E., & Vaglieco, B. M. (2017). Analysis of the effects of diesel/methane dual fuel combustion on nitrogen oxides and particle formation through optical investigation in a real engine. Fuel Processing Technology, 159, 200–210. doi: 10.1016/j.fuproc.2017.01.009
  • Ge, J. C., Kim, M. S., Yoon, S. K., & Choi, N. J. (2015). Effects of pilot injection timing and EGR on combustion, performance and exhaust emissions in a common rail diesel engine fueled with a canola oil biodiesel-diesel blend. Energies, 8, 7312–7325. doi: 10.3390/en8077312
  • Hassan, S., Mohd Nor, F., Zainal, Z. A., & Miskam, M. A. (2011). Performance and emission characteristics of supercharged biomass producer gas-diesel dual fuel engine. Journal of Applied Sciences, 11, 1606–1611. doi: 10.3923/jas.2011.1606.1611
  • Jamuwa, D. K., Sharma, D., & Soni, S. L. (2016). Experimental investigation of performance, exhaust emission and combustion parameters of stationary compression ignition engine using ethanol fumigation in dual fuel mode. Energy Conversion and Management, 115, 221–231. doi: 10.1016/j.enconman.2016.02.055
  • Jung, J., Song, S., & Hur, K. B. (2017). Numerical study on the effects of intake valve timing on performance of a natural gas-diesel dual-fuel engine and multi-objective pareto optimization. Applied Thermal Engineering, 96, 121–134.
  • Kumar, K. S., & Raj, R. T. K. (2013). Effect of fuel injection timing and elevated intake air temperature on the combustion and emission characteristics of dual fuel operated diesel engine. Procedia Engineering, 64, 1191–1198. doi: 10.1016/j.proeng.2013.09.198
  • Lata, D. B., & Misra, A. (2010). Theoretical and experimental investigations on the performance of dual fuel diesel engine with hydrogen and LPG as secondary fuels. International Journal of Hydrogen Energy, 35(21), 11918–11931. doi: 10.1016/j.ijhydene.2010.08.039
  • Lee, S., & Park, S. (2017). Optimization of the piston bowl geometry and the operating conditions of a gasoline-diesel dual-fuel engine based on a compression ignition engine. Energy, 121, 433–448. doi: 10.1016/j.energy.2017.01.026
  • Ling, S., Longbao, Z., Shenghua, L., & Hui, Z. (2005). Decreasing hydrocarbon and carbon monoxide emissions of a natural-gas engine operating in the quasi-homogeneous charge compression ignition mode at low loads. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 1125–1131.
  • Lipardi, A. C. A., Versailles, P., Watson, G. M. G., Bourque, G., & Bergthorson, J. M. (2017). Experimental and numerical study on NOx formation in CH4–air mixtures diluted with exhaust gas components. Combustion and Flame, 179, 325–337. doi: 10.1016/j.combustflame.2017.02.009
  • Lounici, M. S., Boussadi, A., Loubar, K., & Tazerout, M. (2014). Experimental investigation on NG dual fuel engine improvement by hydrogen enrichment. International Journal of Hydrogen Energy, 39(36), 21297–21306. doi: 10.1016/j.ijhydene.2014.10.068
  • Lounici, M. S., Loubar, K., Tarabet, L., Balistrou, M., Niculescu, D.-C., & Tazerout, M. (2014). Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions. Energy, 64, 200–211. doi: 10.1016/j.energy.2013.10.091
  • Maghbouli, A., Saray, R. K., Shafee, S., & Ghafouri, J. (2013). Numerical study of combustion and emission characteristics of dual-fuel engines using 3D-CFD models coupled with chemical kinetics. Fuel, 106, 98–105. doi: 10.1016/j.fuel.2012.10.055
  • Mikulski, M., & Wierzbicki, S. (2016). Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine. Journal of Natural Gas Science and Engineering, 31, 525–537. doi: 10.1016/j.jngse.2016.03.074
  • Mintz, M., Han, J., & Burnham, A. (2014). Alternative and renewable gaseous fuels to improve vehicle environmental performance. In R. Folkson (Ed.), Alternative fuels and advanced vehicle technologies for improved environmental performance (pp. 90–116). New York: Woodhead Publishing.
  • Mittal, M., Donahue, R., Winnie, P., & Gillette, A. (2015). Exhaust emissions characteristics of a multi-cylinder 18.1-L diesel engine converted to fueled with natural gas and diesel pilot. Journal of the Energy Institute, 88(3), 275–283. doi: 10.1016/j.joei.2014.09.003
  • Murty, K. A. (1975). Introduction to combustion phenomena (Vol. 2). Boca Raton, FL: CRC Press.
  • Mustafi, N. N., Raine, R. R., & Verhelst, S. (2013). Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel, 109, 669–678. doi: 10.1016/j.fuel.2013.03.007
  • Najafi, B. (2011). Experimental investigation of the effect of using biodiesel and biogas on dual fuel diesel engine.
  • Najafi, B., Piirouzpanah, V., Ghobadian, B., Sadegpour, & Ranjbar, A. (2007). Experimental investigation of diesel engine performance parameters and pollution using biodiesel.
  • Najafi, B., Torkian, M., Hejazi, M., & Zamzamian, A. (2011). Effect of microalgae biodiesel on performance parameters and exhaust emissions from IDI diesel engine.
  • Pan, W., Yao, C., Han, G., Wei, H., & Wang, Q. (2015). The impact of intake air temperature on performance and exhaust emissions of a diesel methanol dual fuel engine. Fuel, 162, 101–110. doi: 10.1016/j.fuel.2015.08.073
  • Papagiannakis, R. G. (2013). Study of air inlet preheating and EGR impacts for improving the operation of compression ignition engine running under dual fuel mode. Energy Conversion and Management, 68, 40–53. doi: 10.1016/j.enconman.2012.12.019
  • Papagiannakis, R. G., & Hountalas, D. T. (2003). Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual fuel diesel engine. Applied Thermal Engineering, 23(3), 353–365. doi: 10.1016/S1359-4311(02)00187-4
  • Papagiannakis, R. G., & Hountalas, D. T. (2004). Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas. Energy Conversion and Management, 45(18–19), 2971–2987. doi: 10.1016/j.enconman.2004.01.013
  • Pedrozo, V. B., May, I., Dalla Nora, M., Cairns, A., & Zhao, H. (2016). Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load. Applied Energy, 165, 166–182. doi: 10.1016/j.apenergy.2015.12.052
  • Prakash, G., Shaik, A. B., & Ramesh, A. (1999). An approach for estimation of ignition delay in a dual fuel engine. In: SAE technical paper 990232, 1, 1–7.
  • Rosen, A. (1989). KIVA-II: A computer program for chemically reactive flows with sprays. New Mexico: Los Alamos National Laboratory: University of California for the United States.
  • Ryu, K. (2013). Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel. Applied Energy, 111, 721–730. doi: 10.1016/j.apenergy.2013.05.046
  • Sahoo, B. B., Sahoo, N., & Saha, U. K. (2009). Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review. Renewable and Sustainable Energy Reviews, 13(6–7), 1151–1184. doi: 10.1016/j.rser.2008.08.003
  • Singh Kalsi, S., & Subramanian, K. A. (2016). Experimental investigations of effects of EGR on performance and emissions characteristics of CNG fueled reactivity controlled compression ignition (RCCI) engine. Energy Conversion and Management, 130, 91–105. doi: 10.1016/j.enconman.2016.10.044
  • Tarabet, L., Loubar, K., Lounici, M. S., Khiari, K., Belmrabet, T., & Tazerout, M. (2014). Experimental investigation of DI diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode. Fuel, 133, 129–138. doi: 10.1016/j.fuel.2014.05.008
  • Turns, S. R. (2000). An introduction to combustion concepts and applications.
  • Wang, Z., Chen, W., Wang, D., Tan, M., Liu, Z., & Dou, H. (2016). A novel combustion evaluation method based on in-cylinder pressure traces for diesel/natural gas dual fuel engines. Energy, 115, 1130–1137. doi: 10.1016/j.energy.2016.09.030
  • Yaliwal, V. S., Banapurmath, N. R., Gireesh, N. M., Hosmath, R. S., Donateo, T., & Tewari, P. G. (2016). Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels. Renewable Energy, 93, 483–501. doi: 10.1016/j.renene.2016.03.020
  • Yang, B., Xi, C., Wei, X., Zeng, K., & Lai, M.-C. (2015). Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load. Applied Energy, 143, 130–137. doi: 10.1016/j.apenergy.2015.01.037
  • Yoon, S. K., Kim, M. S., Kim, H. J., & Choi, N. J. (2014). Effects of canola oil biodiesel fuel blends on combustion, performance, and emissions reduction in a common rail diesel engine. Energies, 7, 8132–8149. doi: 10.3390/en7128132
  • Yoon, S. H., & Lee, C. S. (2011). Experimental investigation on the combustion and exhaust emission characteristics of biogas–biodiesel dual-fuel combustion in a CI engine. Fuel Processing Technology, 92(5), 992–1000. doi: 10.1016/j.fuproc.2010.12.021
  • Zhang, C.-h., & Song, J.-t. (2016). Experimental study of co-combustion ratio on fuel consumption and emissions of NG–diesel dual-fuel heavy-duty engine equipped with a common rail injection system. Journal of the Energy Institute, 89(4), 578–585. doi: 10.1016/j.joei.2015.06.005
  • Zhao, Y., Wang, Y., Li, D., Lei, X., & Liu, S. (2014). Combustion and emission characteristics of a DME (dimethyl ether)-diesel dual fuel premixed charge compression ignition engine with EGR (exhaust gas recirculation). Energy, 72, 608–617. doi: 10.1016/j.energy.2014.05.086