3,094
Views
5
CrossRef citations to date
0
Altmetric
Articles

Flow-induced vibration of a radial gate at various opening heights

, & ORCID Icon
Pages 567-583 | Received 26 Apr 2017, Accepted 19 May 2018, Published online: 30 Jun 2018

References

  • Abelev, A. S. (1979). Investigation of the total pulsating hydrodynamic load acting on bottom outlet sliding gates and its scale modelling. Proceedings of 8th IAHR congress ( 10A, pp. 1–29). Montreal, CAN.
  • Benra, F.-K., Dohmen, H. J., Pei, J., Schuster, S., & Wan, B. (2011). A comparison of one-way and two-way coupling methods for numerical analysis of fluid–structure interactions. Journal of Applied Mathematics, 2011, 1–16. (Article ID 853560). doi: 10.1155/2011/853560
  • Blake, J. (1999). Fluid mechanics of ciliary propulsion: Computational modeling in biological fluid dynamics: Fluid mechanics of ciliary propulsion. New York, NY: Springer.
  • Boldyrev, Y., Lupuleac, S., & Zhelezhyakova, O. (2004). Numerical simulation of the turbulent flow in the dam ship passing channel. Paper presented at the proceedings of the conference innovations and technical policy. St. Petersburg, RUS.
  • Brown, S. A. (1997). Displacement extrapolations for CFD+CSM aeroelastic analysis. 38th structures, structural dynamics and materials conference (pp. 291–300). Kissimmee, FL, USA.
  • Bungartz, H. J., & Schäfer, M. (2006). Fluid–structure interaction: Modelling, simulation, optimization. New York, NY: Springer.
  • Chau, K. W., & Jiang, Y. W. (2002). Three-dimensional pollutant transport model for the pearl river estuary. Water Research, 36(8), 2029–2039. doi: 10.1016/S0043-1354(01)00400-6
  • Chau, K. W., & Jiang, Y. W. (2004). A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl river estuary. International Journal of Environment and Pollution, 21(2), 188–198. doi: 10.1504/IJEP.2004.004185
  • Fadlun, E. A., Verzicco, R., Orlandi, P., & Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161, 35–60. doi: 10.1006/jcph.2000.6484
  • Farhadi, A., Mayrhofer, A., Tritthart, M., Glas, M., & Habersack, H. (2018). Accuracy and comparison of standard k–ϵ with two variants of k–ω turbulence models in fluvial applications. Engineering Applications of Computational Fluid Mechanics, 12(1), 216–235. doi: 10.1080/19942060.2017.1393006
  • Felippa, C. A., Park, K. C., & Farhat, C. (2001). Partitioned analysis of coupled mechanical systems. Computer Methods in Applied Mechanics and Engineering, 190, 3247–3270. doi: 10.1016/S0045-7825(00)00391-1
  • Gabl, R., & Righetti, M. (2018). Design criteria for a type of asymmetric orifice in a surge tank using CFD. Engineering Applications of Computational Fluid Mechanics, 12(1), 397–410. doi: 10.1080/19942060.2018.1443837
  • Hasse, W. (2001). Unsteady aerodynamics including fluid/ structure interaction. Air and Space Europe, 3, 83–86. doi: 10.1016/S1290-0958(01)90063-2
  • Hou, G., & Satyanarayana, A. (2000). Analytical sensitivity analysis of a static aeroelastic wing. 8th symposium on multidisciplinary analysis and optimization, multidisciplinary analysis optimization conferences (pp. 2000–4824). Long Beach, CA, USA.
  • Hou, G., Wang, J., & Layton, A. (2012). Numerical methods for fluid–structure interaction — a review. Communications in Computational Physics, 12(2), 337–377. doi: 10.4208/cicp.291210.290411s
  • Hübner, B., Walhorn, E., & Dinkler, D. (2004). A monolithic approach to fluid–structure interaction using space–time finite elements. Computer Methods in Applied Mechanics and Engineering, 193, 2087–2104. doi: 10.1016/j.cma.2004.01.024
  • Hyun, J. J., Lee, G. S., & Koo, M. C. (2014). Study on computer based vibration analysis method of hydraulic steel gates. Proceedings of the 2014 Korean society of mechanical engineers spring conference (pp. 99–100). Seoul, KOR (in Korean).
  • Jongeling, T. H. G. (1988). Flow-induced self-excited in-flow vibration of gate plates. Journal of Fluids and Structures, 2(6), 541–566. doi: 10.1016/S0889-9746(88)80022-7
  • Kaligzin, G., & Iaccarino, G. (2003). Toward immersed boundary simulation of high Reynolds number flows. Stanford, CA: Center for Turbulence Research, Stanford University.
  • Kapania, R. K., Bhardwaj, M. K, Reichenbach, E., & Guruswamy, G. P. (1996). Aeroelastic analysis of modern complex wings. 6th symposium on multidisciplinary analysis and optimization (pp. 258–265). Bellevue, WA, USA.
  • Kim, S. H., Ahn, H. T, Ryue, J. S., Shin, H. K., Kwon, O. J, & Seo, H. S. (2012). Fluid–structure interaction analysis for vortex-induced vibration of circular cylinder. Journal of Computational Fluids Engineering, 17(1), 29–35 (in Korean). doi: 10.6112/kscfe.2012.17.1.029
  • Kim, D., & Choi, H. (2006). Immersed boundary method for flow around an arbitrarily moving body. Journal of Computational Physics, 212, 662–680. doi: 10.1016/j.jcp.2005.07.010
  • Kim, D., & Peskin, C. S. (2007). Penalty immersed boundary method for an elastic boundary with mass. Physics and Fluids, 19(053103), 1–18.
  • Kolkman, P. A. (1974). Flow-induced gate vibrations: Prevention of self-excitation computation of dynamic gate behaviour and the use of models (Doctoral dissertation). Delft University of Technology, NED.
  • Korea Rural Corporation. (1995). Hydraulic experiment and wave observation in Saemangeum district. Ansan: Author (in Korean).
  • Liu, W. K., Kim, D. W., & Tang, S. (2006). Mathematical foundations of the immersed finite element method. Computational Mechanics, 39, 211–222. doi: 10.1007/s00466-005-0018-5
  • Matthies, H. G., Niekamp, R., & Steindorf, J. (2006). Algorithms for strong coupling procedures. Computer Methods in Applied Mechanics and Engineering, 195, 2028–2049. doi: 10.1016/j.cma.2004.11.032
  • Matthies, H. G., & Steindorf, J. (2003). Partitioned strong coupling algorithms for fluid–structure interaction. Computers and Structures, 81, 805–812. doi: 10.1016/S0045-7949(02)00409-1
  • Michler, C., Hulshoff, S. J., van Brummelen, E. H., & de Borst, R. (2004). A monolithic approach to fluid–structure interaction. Computers & Fluids, 33(5–6), 839–848. doi: 10.1016/j.compfluid.2003.06.006
  • Newman, J. C., III, Newman, P. A., Taylor, A. C., III, & Hou, G. J.-W. (1999). Efficient non-linear static aeroelastic wing analysis. International Journal of Computers and Fluids, 28, 615–628. doi: 10.1016/S0045-7930(98)00047-4
  • Onish, R., Kimura, T., Guo, Z., & Iwamiya, T. (1998). Coupled aero-structural model: Approach and application to high aspect-ratio wing-Box structures. 7th symposium on multidisciplinary analysis and optimization (pp. 1004–1010). St. Louis, MO, USA.
  • Perng, Y. Y. (2011). Modeling fluid structure interactions. Unpublished manuscript, ANSYS Inc., Pittsburgh, PA, USA.
  • Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25, 220–252. doi: 10.1016/0021-9991(77)90100-0
  • Petukhov, E. (2008). The simulation of the Saint Petersburg flood defense system gate vibration under the loads from the moving water. Joint Advanced Student School (JASS), Saint Petersburg, RUS.
  • Piperno, S., & Farhat, C. (2001). Partitioned procedures for the transient solution of coupled aeroelastic problems – part II: Energy transfer analysis and three-dimensional applications. Computer Methods in Applied Mechanics and Engineering, 190, 3147–3170. doi: 10.1016/S0045-7825(00)00386-8
  • Ryzhakov, P. B., Rossi, R., Idelsohn, S. R., & Oñate, E. (2010). A monolithic Lagrangian approach for fluid–structure interaction problems. Computational Mechanics, 46(6), 883–899. doi: 10.1007/s00466-010-0522-0
  • Samareh, J. A. (1999). A novel shape parameterization approach (NASA Contract No. TM-1999-209116). Hampton, VA: NASA Langley Research Center.
  • Siba, M., Wanmahmood, W., Zakinuawi, M., Rasani, R., & Nassir, M. (2016). Flow-induced vibration in pipes: Challenges and solution – a review. Journal of Engineering Science and Technology, 11(3), 362–382.
  • Sobey, I. J. (1982). Oscillatory flows at intermediate Strouhal number in asymmetric channels. Journal of Fluid Mechanics, 125, 359–373. doi: 10.1017/S0022112082003371
  • Thang, N. D., & Naudascher, E. (1986). Vortex-excited vibrations of underflow gates. Journal of Hydraulic Research, 24(2), 133–151. doi: 10.1080/00221688609499327
  • Udaykumar, H. S., Mittal, R., Rampunggoon, P., & Khanna, A. (2001). A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. Journal of Computational Physics, 174, 345–380. doi: 10.1006/jcph.2001.6916
  • Wang, J., & Layton, A. (2009). Numerical simulations of fiber sedimentation in Navier–Stokes flows. Communications in Computational Physics, 5(1), 61–83.
  • Wang, X. S., & Liu, W. K. (2004). Extended immersed boundary method using FEM and RKPM. Computer Methods in Applied Mechanics and Engineering, 193, 1305–1321. doi: 10.1016/j.cma.2003.12.024
  • Wu, C. L., & Chau, K. W. (2006). Mathematical model of water quality rehabilitation with rainwater utilization — a case study at Haigang. International Journal of Environment and Pollution, 28(3–4), 534–545. doi: 10.1504/IJEP.2006.011227
  • Yang, J., & Balaras, E. (2006). An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. Journal of Computational Physics, 215, 12–40. doi: 10.1016/j.jcp.2005.10.035
  • Zhang, L. T., & Gay, M. (2007). Immersed finite element method for fluid–structure interactions. Journal of Fluids and Structures, 23(6), 839–857. doi: 10.1016/j.jfluidstructs.2007.01.001
  • Zhang, W., Jiang, Y., & Ye, Z. (2007). Two better loosely coupled solution algorithms of CFD based aeroelastic simulation. Engineering Applications of Computational Fluid Mechanics, 1(4), 253–262. doi: 10.1080/19942060.2007.11015197