1,531
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical study of water droplets impacting on cylindrical heat transfer pipes

, , , , &
Pages 598-610 | Received 05 Mar 2018, Accepted 29 Jun 2018, Published online: 01 Aug 2018

References

  • Abolghasemibizaki, M., McMasters, R. L., & Mohammadi, R. (2018). Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features. Journal of Colloid and Interface Science, 521, 17–23. doi: 10.1016/j.jcis.2018.03.005
  • Andrew, M., Liu, Y., & Yeomans, J. M. (2017). Variation of the contact time of droplets bouncing on cylindrical ridges with ridge size. Langmuir, 33(30), 7583–7587. doi: 10.1021/acs.langmuir.7b01625
  • Comtet, J., Keshavarz, B., & Bush, J. W. M. (2016). Drop impact and capture on a thin flexible fiber. Soft Matter, 12(1), 149–156. doi: 10.1039/C5SM02037A
  • Dressaire, E., Sauret, A., Boulogne, F., & Stone, H. A. (2016). Drop impact on a flexible fiber. Soft Matter, 12(1), 200–208. doi: 10.1039/C5SM02246K
  • Faizollahzadeh Ardabili, S., Najafi, B., Shamshirband, S., Minaei Bidgoli, B., Deo, R. C., & Chau, K.-W. (2018). Computational intelligence approach for modeling hydrogen production: A review. Engineering Applications of Computational Fluid Mechanics, 12(1), 438–458. doi: 10.1080/19942060.2018.1452296
  • Hung, L. S., & Yao, S. C. (1999). Experimental investigation of the impaction of water droplets on cylindrical objects. International Journal of Multiphase Flow, 25(8), 1545–1559. doi: 10.1016/S0301-9322(98)00085-8
  • Kim, S.-G., & Kim, W. (2016). Drop impact on a fiber. Physics of Fluids, 28(4), 261–266. doi: 10.1063/1.4945103
  • Liang, G., Guo, Y., Yang, Y., Guo, S., & Shen, S. (2013). Special phenomena from a single liquid drop impact on wetted cylindrical surfaces. Experimental Thermal and Fluid Science, 51, 18–27. doi: 10.1016/j.expthermflusci.2013.06.012
  • Liang, G., Guo, Y., Yang, Y., & Shen, S. (2014). Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces. International Communications in Heat and Mass Transfer, 54, 67–74. doi: 10.1016/j.icheatmasstransfer.2014.03.010
  • Liang, G., Mu, X., Guo, Y., & Shen, S. (2016). Crown and drop rebound on thin curved liquid films. International Journal of Heat and Mass Transfer, 98, 455–461. doi: 10.1016/j.ijheatmasstransfer.2016.03.046
  • Liang, G., Yang, Y., Guo, Y., Zhen, N., & Shen, S. (2014). Rebound and spreading during a drop impact on wetted cylinders. Experimental Thermal and Fluid Science, 52, 97–103. doi: 10.1016/j.expthermflusci.2013.09.001
  • Liu, Y., Andrew, M., Li, J., Yeomans, J. M., & Wang, Z. (2015). Symmetry breaking in drop bouncing on curved surfaces. Nature Communications, 6, 10034. doi: 10.1038/ncomms10034
  • Lorenceau, É., Clanet, C., & Quéré, D. (2004). Capturing drops with a thin fiber. Journal of Colloid and Interface Science, 279(1), 192–197. doi: 10.1016/j.jcis.2004.06.054
  • Lorenceau, E., Clanet, C., Quéré, D., & Vignes-Adler, M. (2009). Off-centre impact on a horizontal fibre. The European Physical Journal Special Topics, 166(1), 3–6. doi: 10.1140/epjst/e2009-00868-0
  • Mao, T., Kuhn, D. C. S., & Tran, H. (1997). Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE Journal, 43(9), 2169–2179. doi: 10.1002/aic.690430903
  • Mou, B., He, B.-J., Zhao, D.-X., & Chau, K.-W. (2017). Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293–309. doi: 10.1080/19942060.2017.1281845
  • Nichols, B. D., Hirt, C. W., & Hotchkiss, R. S. (1981). A fractional volume of fluid method for free boundary dynamics. In Seventh international conference on numerical methods in fluid dynamics (pp. 304–309). Springer, Berlin, Heidelberg.
  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1), 12–49. doi: 10.1016/0021-9991(88)90002-2
  • Pasandideh-Fard, M., Bussmann, M., Chandra, S., & Mostaghimi, J. (2001). Simulating droplet impact on a substrate of arbitrary shape. Atomization and Sprays, 11(4), 397–414. doi: 10.1615/AtomizSpr.v11.i4.60
  • Sussman, M., & Puckett, E. G. (2000). A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2), 301–337. doi: 10.1006/jcph.2000.6537
  • Vadloori, B., Sharath, A. K., Prabhu, N. P., & Maurya, R. (2018). Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A. BMC Research Notes, 11(1), 246–252. doi: 10.1186/s13104-018-3354-1
  • Yu, D. (2013). Preparation and estimation of wear and corrosion resistance superhydrophobic surfaces by electrodeposition (Doctoral dissertation). Retrieved from http://www.cnki.com.cn
  • Zhu, Y., Liu, H. R., Mu, K., Gao, P., Ding, H., & Lu, X. Y. (2017). Dynamics of drop impact onto a solid sphere: Spreading and retraction. Journal of Fluid Mechanics, 824, R3-1–R3-11. doi: 10.1017/jfm.2017.388