6,599
Views
71
CrossRef citations to date
0
Altmetric
Articles

Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning

, , , &
Pages 482-492 | Received 05 Mar 2019, Accepted 27 Apr 2019, Published online: 12 May 2019

Reference

  • Abd Fatah, A. Y., Mazlan, S. A., Koga, T., Zamzuri, H., Zeinali, M., & Imaduddin, F. (2015). A review of design and modeling of magnetorheological valve. International Journal of Modern Physics B, 29(04), 1530004.
  • Anabtawi, M., Abu-Eishah, S., Hilal, N., & Nabhan, M. (2003). Hydrodynamic studies in both bi-dimensional and three-dimensional bubble columns with a single sparger. Chemical Engineering and Processing: Process Intensification, 42(5), 403–408.
  • Avila, G., & Pacheco-Vega, A. (2009). Fuzzy-C-Means-Based Classification of Thermodynamic-Property data: A Critical Assessment. Numerical Heat Transfer, Part A: Applications, 56(11), 880–896.
  • Azwadi, C. S. N., Zeinali, M., Safdari, A., & Kazemi, A. (2013). Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity. Numerical Heat Transfer, Part A: Applications, 63(12), 906–920.
  • Behkish, A., Men, Z., Inga, J. R., & Morsi, B. I. (2002). Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures. Chemical Engineering Science, 57(16), 3307–3324.
  • Ben-Nakhi, A., Mahmoud, M. A., & Mahmoud, A. M. (2008). Inter-model comparison of CFD and neural network analysis of natural convection heat transfer in a partitioned enclosure. Applied Mathematical Modelling, 32(9), 1834–1847.
  • Besbes, S., El Hajem, M., Ben Aissia, H., Champagne, J.-Y., & Jay, J. (2015). PIV measurements and eulerian–lagrangian simulations of the unsteady gas–liquid flow in a needle sparger rectangular bubble column. Chemical Engineering Science, 126, 560–572.
  • Bouaifi, M., Hebrard, G., Bastoul, D., & Roustan, M. (2001). A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chemical Engineering and Processing: Process Intensification, 40(2), 97–111.
  • Burns, A. D., Frank, T., Hamill, I., & Shi, J.-M. (2004). The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. Paper presented at the 5th international conference on multiphase flow, ICMF.
  • Chau, K.-w. (2017). Use of meta-heuristic techniques in rainfall-runoff modelling: Multidisciplinary Digital Publishing Institute.
  • Chau, K., & Albermani, F. (2003). Knowledge-based system on optimum design of liquid retaining structures with genetic algorithms. Journal of Structural Engineering, 129(10), 1312–1321.
  • Chau, K.-W., & Albermani, F. (2002). Expert system application on preliminary design of water retaining structures. Expert Systems with Applications, 22(2), 169–178.
  • Chau, K., & Jiang, Y. (2002). Three-dimensional pollutant transport model for the Pearl River Estuary. Water Research, 36(8), 2029–2039.
  • Chen, X. Y., & Chau, K. W. (2016). A hybrid double feedforward neural network for suspended sediment load estimation. Water Resources Management, 30(7), 2179–2194.
  • Cheng, C. T., & Chau, K.-W. (2002). Three-person multi-objective conflict decision in reservoir flood control. European Journal of Operational Research, 142(3), 625–631.
  • Cho, Y. J., Woo, K. J., Kang, Y., & Kim, S. D. (2002). Dynamic characteristics of heat transfer coefficient in pressurized bubble columns with viscous liquid medium. Chemical Engineering and Processing: Process Intensification, 41(8), 699–706.
  • Deen, N. G., Solberg, T., & Hjertager, B. H. (2000). Numerical simulation of the gas-liquid flow in a square cross-sectioned bubble column. Paper presented at the Proceedings of 14th Int. Congress of Chemical and Process Engineering: CHISA (Praha, Czech Republic, 2000).
  • Degaleesan, S., Dudukovic, M., & Pan, Y. (2001). Experimental study of gas-induced liquid-flow structures in bubble columns. AIChE Journal, 47(9), 1913–1931.
  • Dhotre, M., Ekambara, K., & Joshi, J. (2004). CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors. Experimental Thermal and Fluid Science, 28(5), 407–421.
  • Doran, P. M. (1995). Bioprocess engineering principles. Elsevier.
  • Essadki, H., Nikov, I., & Delmas, H. (1997). Electrochemical probe for bubble size prediction in a bubble column. Experimental Thermal and Fluid Science, 14(3), 243–250.
  • Faizollahzadeh Ardabili, S., Najafi, B., Shamshirband, S., Minaei Bidgoli, B., Deo, R. C., & Chau, K.-w. (2018). Computational intelligence approach for modeling hydrogen production: A review. Engineering Applications of Computational Fluid Mechanics, 12(1), 438–458.
  • Islam, M. T., Ganesan, P., & Cheng, J. (2015). A pair of bubbles’ rising dynamics in a xanthan gum solution: A CFD study. RSC Advances, 5(11), 7819–7831.
  • Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, man, and Cybernetics, 23(3), 665–685.
  • Jang, J.-S. (1996). Input selection for ANFIS learning. Paper presented at the Fuzzy Systems, 1996., Proceedings of the Fifth IEEE International Conference on.
  • Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence.
  • Krishna, R., Urseanu, M., Van Baten, J., & Ellenberger, J. (1999). Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: Experiments vs. Eulerian simulations. Chemical Engineering Science, 54(21), 4903–4911.
  • Krishna, R., & Van Baten, J. (2003). Mass transfer in bubble columns. Catalysis Today, 79-80, 67–75.
  • Kumar, A., Degaleesan, T., Laddha, G., & Hoelscher, H. (1976). Bubble swarm characteristics in bubble columns. The Canadian Journal of Chemical Engineering, 54(5), 503–508.
  • Laborde-Boutet, C., Larachi, F., Dromard, N., Delsart, O., & Schweich, D. (2009). CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical Engineering Science, 64(21), 4399–4413.
  • Lei, Y., He, Z., Zi, Y., & Hu, Q. (2007). Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mechanical Systems and Signal Processing, 21(5), 2280–2294.
  • Li, H., & Prakash, A. (2002). Analysis of flow patterns in bubble and slurry bubble columns based on local heat transfer measurements. Chemical Engineering Journal, 86(3), 269–276.
  • Li, W., Zhong, W., Jin, B., Lu, Y., & He, T. (2014). Flow patterns and transitions in a rectangular three-phase bubble column. Powder Technology, 260, 27–35.
  • Liu, Y., & Hinrichsen, O. (2014). Study on CFD–PBM turbulence closures based on k–ε and Reynolds stress models for heterogeneous bubble column flows. Computers & Fluids, 105, 91–100.
  • Lopez de Bertodano, M., LaheyJr R., & Jones, O. (1994). Turbulent bubbly two-phase flow data in a triangular duct. Nuclear Engineering and Design, 146(1), 43–52.
  • Luo, X., Lee, D., Lau, R., Yang, G., & Fan, L. S. (1999). Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE Journal, 45(4), 665–680.
  • Maalej, S., Benadda, B., & Otterbein, M. (2003). Interfacial area and volumetric mass transfer coefficient in a bubble reactor at elevated pressures. Chemical Engineering Science, 58(11), 2365–2376.
  • Masood, R., & Delgado, A. (2014). Numerical investigation of the interphase forces and turbulence closure in 3D square bubble columns. Chemical Engineering Science, 108, 154–168.
  • Masood, R., Khalid, Y., & Delgado, A. (2015). Scale adaptive simulation of bubble column flows. Chemical Engineering Journal, 262, 1126–1136.
  • McClure, D. D., Aboudha, N., Kavanagh, J. M., Fletcher, D. F., & Barton, G. W. (2015). Mixing in bubble column reactors: Experimental study and CFD modeling. Chemical Engineering Journal, 264, 291–301.
  • Michele, V., & Hempel, D. C. (2002). Liquid flow and phase holdup—measurement and CFD modeling for two-and three-phase bubble columns. Chemical Engineering Science, 57(11), 1899–1908.
  • Moazenzadeh, R., Mohammadi, B., Shamshirband, S., & Chau, K.-w. (2018). Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics, 12(1), 584–597.
  • Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Chau, K.-w. (2017). Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management-A case study in Tehran Metropolis of Iran. Journal of Cleaner Production, 148, 427–440.
  • Panella, M., & Gallo, A. S. (2005). An input-output clustering approach to the synthesis of ANFIS networks. IEEE Transactions on Fuzzy Systems, 13(1), 69–81.
  • Pfleger, D., & Becker, S. (2001). Modelling and simulation of the dynamic flow behaviour in a bubble column. Chemical Engineering Science, 56(4), 1737–1747.
  • Pino, L., Solari, R., Siquier, S., Antonio Estevez, L., Yepez, M., & Saez, A. (1992). Effect of operating conditions on gas holdup in slurry bubble columns with a foaming liquid. Chemical Engineering Communications, 117(1), 367–382.
  • Pourtousi, M. (2012). Simulation of particle motion in incompressible fluid by Lattice Boltzmann MRT model. Johor Bahru: Universiti Teknologi Malaysia.
  • Pourtousi, M., Sahu, J., & Ganesan, P. (2014). Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column. Chemical Engineering and Processing: Process Intensification, 75, 38–47.
  • Pourtousi, M., Sahu, J., Ganesan, P., Shamshirband, S., & Redzwan, G. (2015). A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics. Powder Technology, 274, 466–481.
  • Pourtousi, M., Zeinali, M., Ganesan, P., & Sahu, J. N. (2015). Prediction of multiphase flow pattern inside a 3D bubble column reactor using a combination of CFD and ANFIS. RSC Advances, 5(104), 85652–85672. doi: 10.1039/c5ra11583c
  • Prakash, A., Margaritis, A., Li, H., & Bergougnou, M. (2001). Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast. Biochemical Engineering Journal, 9(2), 155–163.
  • Rabha, S., Schubert, M., & Hampel, U. (2013). Intrinsic flow behavior in a slurry bubble column: A study on the effect of particle size. Chemical Engineering Science, 93, 401–411.
  • Rampure, M. R., Kulkarni, A. A., & Ranade, V. V. (2007). Hydrodynamics of bubble column reactors at high gas velocity: Experiments and computational fluid dynamics (CFD) simulations. Industrial & Engineering Chemistry Research, 46(25), 8431–8447.
  • Ruzicka, M., Zahradnık, J., Drahoš, J., & Thomas, N. (2001). Homogeneous–heterogeneous regime transition in bubble columns. Chemical Engineering Science, 56(15), 4609–4626.
  • Ryoo, J., Dragojlovic, Z., & Kaminski, D. A. (2005). Control of convergence in a computational fluid dynamics simulation using ANFIS. IEEE Transactions on Fuzzy Systems, 13(1), 42–47.
  • Şal, S., Gül, ÖF, & Özdemir, M. (2013). The effect of sparger geometry on gas holdup and regime transition points in a bubble column equipped with perforated plate spargers. Chemical Engineering and Processing: Process Intensification, 70, 259–266.
  • Sanyal, J., Vásquez, S., Roy, S., & Dudukovic, M. (1999). Numerical simulation of gas–liquid dynamics in cylindrical bubble column reactors. Chemical Engineering Science, 54(21), 5071–5083.
  • Schurter, K. C., & Roschke, P. N. (2000). Fuzzy modeling of a magnetorheological damper using ANFIS. Paper presented at the Fuzzy Systems, 2000. FUZZ IEEE 2000. The Ninth IEEE International Conference on.
  • Shah, Y., Kelkar, B. G., Godbole, S., & Deckwer, W. D. (1982). Design parameters estimations for bubble column reactors. AIChE Journal, 28(3), 353–379.
  • Shimizu, K., Takada, S., Minekawa, K., & Kawase, Y. (2000). Phenomenological model for bubble column reactors: Prediction of gas hold-ups and volumetric mass transfer coefficients. Chemical Engineering Journal, 78(1), 21–28.
  • Simonnet, M., Gentric, C., Olmos, E., & Midoux, N. (2007). Experimental determination of the drag coefficient in a swarm of bubbles. Chemical Engineering Science, 62(3), 858–866.
  • Simonnet, M., Gentric, C., Olmos, E., & Midoux, N. (2008). CFD simulation of the flow field in a bubble column reactor: Importance of the drag force formulation to describe regime transitions. Chemical Engineering and Processing: Process Intensification, 47(9-10), 1726–1737.
  • Sokolichin, A., & Eigenberger, G. (1994). Gas—liquid flow in bubble columns and loop reactors: Part I. Detailed modelling and numerical simulation. Chemical Engineering Science, 49(24), 5735–5746.
  • Tabib, M. V., Roy, S. A., & Joshi, J. B. (2008). CFD simulation of bubble column—an analysis of interphase forces and turbulence models. Chemical Engineering Journal, 139(3), 589–614.
  • Taherei Ghazvinei, P., Hassanpour Darvishi, H., Mosavi, A., Yusof, K., b, W., Alizamir, M., … Chau, K.-w. (2018). Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Engineering Applications of Computational Fluid Mechanics, 12(1), 738–749.
  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15 (1), 116–132.
  • Varol, Y., Avci, E., Koca, A., & Oztop, H. F. (2007). Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using adaptive-network-based fuzzy inference system (ANFIS) and artificial neural network (ANN). International Communications in Heat and Mass Transfer, 34(7), 887–896.
  • Varol, Y., Koca, A., Oztop, H. F., & Avci, E. (2008). Analysis of adaptive-network-based fuzzy inference system (ANFIS) to estimate buoyancy-induced flow field in partially heated triangular enclosures. Expert Systems with Applications, 35(4), 1989–1997.
  • Wang, S., Arimatsu, Y., Koumatsu, K., Furumoto, K., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2003). Gas holdup, liquid circulating velocity and mass transfer properties in a mini-scale external loop airlift bubble column. Chemical Engineering Science, 58(15), 3353–3360.
  • Wang, W.-c., Chau, K.-w., Qiu, L., & Chen, Y.-b. (2015). Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environmental Research, 139, 46–54.
  • Wang, H., Jia, X., Wang, X., Zhou, Z., Wen, J., & Zhang, J. (2014). CFD modeling of hydrodynamic characteristics of a gas–liquid two-phase stirred tank. Applied Mathematical Modelling, 38(1), 63–92.
  • Xiao, Q., Yang, N., & Li, J. (2013). Stability-constrained multi-fluid CFD models for gas–liquid flow in bubble columns. Chemical Engineering Science, 100, 279–292.
  • Xing, C., Wang, T., & Wang, J. (2013). Experimental study and numerical simulation with a coupled CFD–PBM model of the effect of liquid viscosity in a bubble column. Chemical Engineering Science, 95, 313–322.
  • Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.-W. (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569, 387–408.
  • Yun, Z., Quan, Z., Caixin, S., Shaolan, L., Yuming, L., & Yang, S. (2008). RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Transactions on Power Systems, 23(3), 853–858.
  • Zeinali, M., Mazlan, S. A., Fatah, A. Y. A., & Zamzuri, H. (2013). A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system. Smart Materials and Structures, 22(12), 125013.
  • Ziegenhein, T., Rzehak, R., Krepper, E., & Lucas, D. (2013). Numerical simulation of Polydispersed flow in bubble columns with the Inhomogeneous multi-size-group model. Chemie Ingenieur Technik, 85(7), 1080–1091.
  • Ziegenhein, T., Rzehak, R., & Lucas, D. (2015). Transient simulation for large scale flow in bubble columns. Chemical Engineering Science, 122, 1–13.