3,332
Views
43
CrossRef citations to date
0
Altmetric
Review Articles

Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions

, ORCID Icon, ORCID Icon, , , , , & show all
Pages 811-823 | Received 12 May 2019, Accepted 14 Jul 2019, Published online: 08 Aug 2019

References

  • Alazba, A. A., Yassin, M. A., & Mattar, M. A. (2016). Modeling daily evapotranspiration in hyper-arid environment using gene expression programming. Arabian Journal of Geosciences, 9(3), 202. doi: 10.1007/s12517-015-2273-x
  • Ali Ghorbani, M., Kazempour, R., Chau, K.-W., Shamshirband, S., & Taherei Ghazvinei, P. (2018). Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran. Engineering Applications of Computational Fluid Mechanics, 12(1), 724–737. doi: 10.1080/19942060.2018.1517052
  • Allen, R. G., Burt, C. M., Solomon, K., Clemmens, A. J., & O’Halloran, T. (2005). Prediction accuracy for project wide evapotranspiration using crop coefficients and reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 131, 24–36. doi:10.1061/(asce)0733-9437(2005)131:1(24)
  • Al Sudani, Z. A., Salih, S. Q., & Yaseen, Z. M. (2019). Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. Journal of Hydrology, 573(June), 1–12. doi: 10.1016/j.jhydrol.2019.03.004
  • Am, S. (2013). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493–2537. doi:10.1.1.231.4614
  • Baghban, A., Jalali, A., Shafiee, M., Ahmadi, M. H., & Chau, K. (2019). Developing an ANFIS-based swarm concept model for estimating the relative viscosity of nanofluids. Engineering Applications of Computational Fluid Mechanics, 13(1), 26–39. doi: 10.1080/19942060.2018.1542345
  • Chau, K. (2017). Use of meta-heuristic techniques in rainfall-runoff modelling. Water, 9(3), 1–6.
  • Chau, K. W. (2007). A split-step particle swarm optimization algorithm in river stage forecasting. Journal of Hydrology, 346(3-4), 131–135. doi: 10.1016/j.jhydrol.2007.09.004
  • Chen, L.-H., Chen, J., & Chen, C. (2018). Effect of environmental measurement uncertainty on prediction of evapotranspiration. Atmosphere, 9(10), 400. doi: 10.3390/atmos9100400
  • Chuntian, C., & Chau, K. W. (2002). Three-person multi-objective conflict decision in reservoir flood control. European Journal of Operational Research, 142(3), 625–631. doi:10.1016/S0377-2217(01)00319-8
  • Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrigation and Drainage Systems, 19(3), 223–249. doi:10.1007/s10795-005-5186-0
  • Danandeh Mehr, A., Kahya, E., & Ozger, M. (2014). A gene-wavelet model for long lead time drought forecasting. Journal of Hydrology, 517, 691–699. doi: 10.1016/j.jhydrol.2014.06.012
  • Danandeh Mehr, A., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M. A., & Yaseen, Z. M. (2018). Genetic programming in water resources engineering: A state-of-the-art review. Journal of Hydrology, 566(November), 643–667. doi: 10.1016/j.jhydrol.2018.09.043
  • Dineva, A., Mosavi, A., Ardabili, S. F., Vajda, I., Shamshirband, S., Rabczuk, T., & Chau, K. (2019). Review of soft computing models in design and control of rotating electrical machines. Energies, 12(6), 1049.
  • El-Baroudy, I., Elshorbagy, A., Carey, S. K., Giustolisi, O., & Savic, D. (2010). Comparison of three data-driven techniques in modelling the evapotranspiration process. Journal of Hydroinformatics, 12(4), 365–379. doi: 10.2166/hydro.2010.029
  • Eslamian, S. S., Gohari, S. A., Zareian, M. J., & Firoozfar, A. (2012). Estimating Penman–Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: A case study. Arabian Journal for Science and Engineering, 37(4), 935–944.
  • Farg, E., Arafat, S. M., Abd El-Wahed, M. S., & El-Gindy, A. M. (2012). Estimation of evapotranspiration ETcand crop coefficient Kcof wheat, in south Nile Delta of Egypt using integrated FAO-56 approach and remote sensing data. Egyptian Journal of Remote Sensing and Space Science, 15(1), 83–89. doi:10.1016/j.ejrs.2012.02.001
  • Feng, Y., Cui, N., Gong, D., Zhang, Q., & Zhao, L. (2017). Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management, 193, 163–173. doi: 10.1016/j.agwat.2017.08.003
  • Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. doi: 10.1016/j.ejor.2017.11.054
  • Fisher, J. B., Malhi, Y., Bonal, D., Da Rocha, H. R., De Araújo, A. C., Gamo, M., … Von Randow, C. (2009). The land-atmosphere water flux in the tropics. Global Change Biology, 15(11), 2694–2714. doi:10.1111/j.1365-2486.2008.01813.x
  • Ghorbani, M. A., Deo, R. C., Karimi, V., Yaseen, Z. M., & Terzi, O. (2018). Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment, 32(6), 1683–1697. doi: 10.1007/s00477-017-1474-0
  • Ghorbani, M. A., Deo, R. C., Yaseen, Z. M., & Kashani, M. H. (2018). Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran. Theoretical and Applied Climatology, 133(3–4), 1119–1131. doi: 10.1007/s00704-017-2244-0
  • Gocić, M., Motamedi, S., Shamshirband, S., Petković, D., Ch, S., Hashim, R., & Arif, M. (2015). Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture, 113, 164–173. doi: 10.1016/j.compag.2015.02.010
  • Guven, A., Aytek, A., Yuce, M. I., & Aksoy, H. (2008). Genetic programming-based empirical model for daily reference evapotranspiration estimation. Clean - Soil, Air, Water, 36(10–11), 905–912. doi: 10.1002/clen.200800009
  • Haie, N., Pereira, R. M. S., Machado, G. J., & Shahidian, S. (2019). An introduction to the hyperspace of Penman-Monteith reference evapotranspiration. International Journal of Hydrology Science and Technology, 9(1), 48–64.
  • Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A. R., Jaitly, N., … Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97. doi:10.1109/MSP.2012.2205597
  • Izadifar, Z., & Elshorbagy, A. (2010). Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrological Processes, 24(23), 3413–3425. doi: 10.1002/hyp.7771
  • Jayawardena, A. W., Muttil, N., & Lee, J. H. W. (2006). Comparative analysis of data-driven and GIS-based conceptual rainfall-runoff model. Journal of Hydrologic Engineering, 11(February), 1–11.
  • Jean, M., Paix, D., Lanhai, L. I., Jiwen, G. E., Jean, N., & Verenyam, A. (2012). Water losses in arid and semi-arid zone: Evaporation, evapotranspiration and seepage. Journal of Mountain Science, 9, 256–261. doi: 10.1007/s11629-012-2186-z
  • Jovic, S., Nedeljkovic, B., Golubovic, Z., & Kostic, N. (2018). Evolutionary algorithm for reference evapotranspiration analysis. Computers and Electronics in Agriculture, 150(April), 1–4. doi: 10.1016/j.compag.2018.04.003
  • Karimi, S., Kisi, O., & Kim, S. (2017). Modelling daily reference evapotranspiration in humid locations of South Korea using local and cross-station data management scenarios. International Journal of Climatology, 37(November 2016), 3238–3246. doi: 10.1002/joc.4911
  • Kiafar, H., Babazadeh, H., Marti, P., Kisi, O., Landeras, G., Karimi, S., & Shiri, J. (2017). Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations. Theoretical and Applied Climatology, 130(1–2), 377–389. doi: 10.1007/s00704-016-1888-5
  • Kim, S., & Kim, H. S. (2008). Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, 351(3–4), 299–317. doi: 10.1016/j.jhydrol.2007.12.014
  • Kisi, O. (2010). Fuzzy genetic approach for modeling reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 136(March), 175–183.
  • Kisi, O., & Guven, A. (2010). Evapotranspiration modeling using linear genetic programming technique. Journal of Irrigation and Drainage Engineering, 136(October), 715–723.
  • Kisi, O., Sanikhani, H., Zounemat-Kermani, M., & Niazi, F. (2015). Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Computers and Electronics in Agriculture, 115, 66–77. doi: 10.1016/j.compag.2015.04.015
  • Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press.
  • Kumar, D., Adamowski, J., Suresh, R., & Ozga-zielinski, B. (2016). Estimating evapotranspiration using an extreme learning machine model: Case study in North Bihar, India. Journal of Irrigation and Drainage Engineering, 142(9), 1–9. doi: 10.1061/(ASCE)IR
  • Kumar, R., Jat, M. K., & Shankar, V. (2012). Methods to estimate irrigated reference crop evapotranspiration - A review. Water Science and Technology, 66(3), 525–535. doi:10.2166/wst.2012.191
  • Kumar, M., Raghuwanshi, N. S., & Singh, R. (2011). Artificial neural networks approach in evapotranspiration modeling: A review. Irrigation Science, 19(1), 11–25. doi:10.1007/s00271-010-0230-8
  • Landeras, G., Bekoe, E., Ampofo, J., Logah, F., Diop, M., Cisse, M., & Shiri, J. (2018). New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies. Theoretical and Applied Climatology, 132, 701–716. doi: 10.1007/s00704-017-2120-y
  • Martí, P., González-Altozano, P., López-Urrea, R., Mancha, L. A., & Shiri, J. (2015). Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agricultural Water Management, 149, 81–90. doi: 10.1016/j.agwat.2014.10.028
  • Mattar, M. A. (2018). Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt. Agricultural Water Management, 198, 28–38. doi: 10.1016/j.agwat.2017.12.017
  • Mattar, M. A., & Alazba, A. A. (2018). GEP and MLR approaches for the prediction of reference evapotranspiration. Neural Computing and Applications, 1–13. doi: 10.1007/s00521-018-3410-8
  • Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique. Pattern Recognition, 33(9), 1455–1465. doi: 10.1016/S0031-3203(99)00137-5
  • Mehdizadeh, S. (2018). Estimation of daily reference evapotranspiration (ETo) using artificial intelligence methods: Offering a new approach for lagged ETo data-based modeling. Journal of Hydrology, 559, 794–812. doi: 10.1016/j.jhydrol.2018.02.060
  • Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, 139, 103–114. doi: 10.1016/j.compag.2017.05.002
  • Mehr, A. D. (2018). An improved gene expression programming model for streamflow forecasting in intermittent streams. Journal of Hydrology, 563(June), 669–678. doi: 10.1016/j.jhydrol.2018.06.049
  • Meng, E., Huang, S., Huang, Q., Fang, W., Wu, L., & Wang, L. (2019). A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. Journal of Hydrology, 568(November 2018), 462–478. doi: 10.1016/j.jhydrol.2018.11.015
  • Mirjalili, S. M., Mirjalili, S. Z., Saremi, S., & Mirjalili, S. (2020). Sine cosine algorithm: Theory, literature review, and application in designing bend photonic crystal waveguides. In Nature-inspired optimizers (pp. 201–217). Cham: Springer.
  • Moazenzadeh, R., Mohammadi, B., Shamshirband, S., & Chau, K. (2018). Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics, 12(1), 584–597. doi: 10.1080/19942060.2018.1482476
  • Mohammad, O., Pour, R., Piri, J., & Kisi, O. (2018). Comparison of SVM, ANFIS and GEP in modeling monthly potential evapotranspiration in arid region (case study: Sistan and baluchestan province –Iran). Water Science & Technology, 19(2), 392–403. doi:10.2166/ws.2018.084
  • Najafzadeh, M., & Kargar, A. R. (2019). Gene-expression programming, evolutionary polynomial regression, and model tree to evaluate local scour depth at culvert outlets. Journal of Pipeline Systems Engineering and Practice, 10(3). doi: 10.1061/(ASCE)PS.1949-1204.0000376
  • Nourani, V., Komasi, M., & Alami, M. T. (2013). Geomorphology-based genetic programming approach for rainfall–runoff modeling. Journal of Hydroinformatics, 15, 427–445. doi: 10.2166/hydro.2012.113
  • Parasuraman, K., Elshorbagy, A., & Carey, S. K. (2007). Modelling the dynamics of the evapotranspiration process using genetic programming. Hydrological Sciences Journal, 52(3), 563–578. doi: 10.1623/hysj.52.3.563
  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 193(1032), 120–145. doi: 10.1098/rspa.1948.0037
  • Pereira, A. R., Green, S., & Villa Nova, N. A. (2006). Penman-Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration. Agricultural Water Management, 83(1-2), 153–161. doi:10.1016/j.agwat.2005.11.004
  • Sanikhani, H., Kisi, O., Maroufpoor, E., & Yaseen, Z. M. (2019). Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: Application of different modeling scenarios. Theoretical and Applied Climatology, 135(1-2), 449–462. doi: 10.1007/s00704-018-2390-z
  • Shiri, J. (2017). Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agricultural Water Management, 188, 101–114. doi: 10.1016/j.agwat.2017.04.009
  • Shiri, J. (2019). Modeling reference evapotranspiration in island environments: Assessing the practical implications. Journal of Hydrology, 570(January), 265–280. doi: 10.1016/j.jhydrol.2018.12.068
  • Shiri, J., Kişi, Ö, Landeras, G., López, J. J., Nazemi, A. H., & Stuyt, L. C. P. M. (2012). Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). Journal of Hydrology, 414–415, 302–316. doi: 10.1016/j.jhydrol.2011.11.004
  • Shiri, J., Marti, P., Karimi, S., & Landeras, G. (2019). Data splitting strategies for improving data driven models for reference evapotranspiration estimation among similar stations. Computers and Electronics in Agriculture, 162(March), 70–81. doi: 10.1016/j.compag.2019.03.030
  • Shiri, J., Marti, P., Kisi, O., Landeras, G., Fard, A. F., Nazemi, A. H., & Sadraddini, A. A. (2013). Evaluation of different data management scenarios for estimating daily reference evapotranspiration. Hydrology Research, 44(6), 1058–1070. doi: 10.2166/nh.2013.154
  • Shiri, J., Nazemi, A. H., Sadraddini, A. A., Landeras, G., Kisi, O., Fakheri Fard, A., & Marti, P. (2014). Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture, 108, 230–241. doi: 10.1016/j.compag.2014.08.007
  • Shiri, J., Sadraddini, A. A., Nazemi, A. H., Kisi, O., Landeras, G., Fakheri Fard, A., & Marti, P. (2014). Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology, 508, 1–11. doi: 10.1016/j.jhydrol.2013.10.034
  • Sun, H., Yang, Y., Wu, R., Gui, D., Xue, J., Liu, Y., & Yan, D. (2019). Improving estimation of cropland evapotranspiration by the bayesian model averaging method with surface energy balance models. Atmosphere, 10(4), 188.
  • Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104–3112). Snowbird: NeurIPS.
  • Tao, H., Diop, L., Bodian, A., Djaman, K., Ndiaye, P. M., & Yaseen, Z. M. (2018). Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agricultural Water Management, 208, 140–151.
  • Tao, H., Sulaiman, S. O., Yaseen, Z. M., Asadi, H., Meshram, S. G., & Ghorbani, M. A. (2018). with SVM-FFA data-intelligence model? Application of rainfall forecasting over regional scale. Water Resources Management, 32(12), 3935–3959. doi: 10.1007/s11269-018-2028-z
  • Taormina, R., & Chau, K. W. (2015). Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines. Journal of Hydrology, 529, 1617–1632. doi: 10.1016/j.jhydrol.2015.08.022
  • Traore, S., & Guven, A. (2012). Regional-specific numerical models of evapotranspiration using gene-expression programming interface in sahel. Water Resources Management, 26(15), 4367–4380. doi: 10.1007/s11269-012-0149-3
  • Traore, S., & Guven, A. (2013). New algebraic formulations of evapotranspiration extracted from gene-expression programming in the tropical seasonally dry regions of West Africa. Irrigation Science, 31(1), 1–10. doi: 10.1007/s00271-011-0288-y
  • Traore, S., Luo, Y., & Fipps, G. (2017). Gene-expression programming for short-term forecasting of daily reference evapotranspiration using public weather forecast information. Water Resources Management, 31(15), 4891–4908. doi: 10.1007/s11269-017-1784-5
  • Wu, C. L., & Chau, K. W. (2011). Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399(3–4), 394–409. doi: 10.1016/j.jhydrol.2011.01.017
  • Yaseen, Z. M., El-shafie, A., Jaafar, O., Afan, H. A., & Sayl, K. N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530, 829–844. doi: 10.1016/j.jhydrol.2015.10.038
  • Yaseen, Z., Mohtar, W. H. M. W., Ameen, A. M. S., Ebtehaj, I., Razali, S. F. M., Bonakdari, H., … Shahid, S. (2019). Implementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical region. IEEE Access, 7, 74471–74481. doi: 10.1109/ACCESS.2019.2920916
  • Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.-W. (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569, 387–408. doi: 10.1016/j.jhydrol.2018.11.069
  • Yassin, M. A., Alazba, A. A., & Mattar, M. A. (2016a). Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, 163, 110–124. doi: 10.1016/j.agwat.2015.09.009
  • Yassin, M. A., Alazba, A. A., & Mattar, M. A. (2016b). Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid conditions. Water Resources, 43(2), 412–427. doi: 10.1134/S0097807816020172