5,089
Views
33
CrossRef citations to date
0
Altmetric
Articles

Prediction of evaporation in arid and semi-arid regions: a comparative study using different machine learning models

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 70-89 | Received 16 Aug 2019, Accepted 12 Oct 2019, Published online: 15 Nov 2019

References

  • Abbas, N., Wasimi, S. A., Al-Ansari, N., & Sultana, N. (2018). Water resources problems of Iraq: Climate change adaptation and mitigation. Journal of Environmental Hydrology, 26(6), 1–6. Retrieved from http://www.diva-portal.org/smash/get/diva2:1206419/FULLTEXT01.pdf
  • Abdullah, S. S., Malek, M. A., Abdullah, N. S., Kisi, O., & Yap, K. S. (2015). Extreme learning machines: A new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527, 184–195. doi: 10.1016/j.jhydrol.2015.04.073
  • Abghari, H., Ahmadi, H., Besharat, S., & Rezaverdinejad, V. (2012). Prediction of daily pan evaporation using wavelet neural networks. Water Resources Management, 26(12), 3639–3652. doi: 10.1007/s11269-012-0096-z
  • Al-Ansari, N., Ali, A. A., & Knutsson, S. (2014). Present conditions and future Challenges of water resources problems in Iraq. Journal of Water Resource and Protection, 6, 1066–1098. doi: 10.4236/jwarp.2014.612102
  • Al-Taai, O. T., & Hadi, S. H. (2018). Analysis of the monthly and annual change of soil Moisture and evaporation in Iraq. Al-Mustansiriyah Journal of Science, 29(4), 7–13.
  • Ali Ghorbani, M., Kazempour, R., Chau, K.-W., Shamshirband, S., & Taherei Ghazvinei, P. (2018). Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran. Engineering Applications of Computational Fluid Mechanics, 12(1), 724–737. doi: 10.1080/19942060.2018.1517052
  • Baydarolu, Ö, & Koçak, K. (2014). SVR-based prediction of evaporation combined with chaotic approach. Journal of Hydrology, 508, 356–363. doi: 10.1016/j.jhydrol.2013.11.008
  • Boers, T. M., De Graaf, M., Feddes, R. A., & Ben-Asher, J. (1986). A linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones. Agricultural Water Management, doi: 10.1016/0378-3774(86)90038-7
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. The Wadsworth statisticsprobability series (Vol. 19). doi: 10.1371/journal.pone.0015807
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. doi: 10.5194/gmd-7-1247-2014
  • Chenoweth, J., Hadjinicolaou, P., Bruggeman, A., Lelieveld, J., Levin, Z., Lange, M. A., … Hadjikakou, M. (2011). Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resources Research, doi: 10.1029/2010WR010269
  • Danandeh Mehr, A., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M. A., & Yaseen, Z. M. (2018). Genetic programming in water resources engineering: A state-of-the-art review. Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.09.043
  • Di, N., Wang, Y., Clothier, B., Liu, Y., Jia, L., Xi, B., & Shi, H. (2019). Modeling soil evaporation and the response of the crop coefficient to leaf area index in mature Populus tomentosa plantations growing under different soil water availabilities. Agricultural and Forest Meteorology, doi: 10.1016/j.agrformet.2018.10.004
  • Eames, I. W., Marr, N. J., & Sabir, H. (1997). The evaporation coefficient of water: A review. International Journal of Heat and Mass Transfer, doi: 10.1016/S0017-9310(96)00339-0
  • Fahimi, F., Yaseen, Z. M., & El-shafie, A. (2016). Application of soft computing based hybrid models in hydrological variables modeling: A comprehensive review. Theoretical and Applied Climatology, 1–29. doi: 10.1007/s00704-016-1735-8
  • Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. Advances in Neural Information Processing Systems, 524–532. doi: 10.1190/1.1821929
  • Fallah-Mehdipour, E., Bozorg Haddad, O., & Mariño, M. A. (2013). Prediction and simulation of monthly groundwater levels by genetic programming. Journal of Hydro-Environment Research, 7(4), 253–260. doi: 10.1016/j.jher.2013.03.005
  • Ferreira, C. (2001). Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems, 13(2), 1–22. Retrieved from http://arxiv.org/abs/cs/0102027
  • Ferreira, C. (2006). Gene expression programming: Mathematical modeling by an artificial intelligence (2nd). Berlin: Springer.
  • Fotovatikhah, F., Herrera, M., Shamshirband, S., Ardabili, S. F., & Piran, J. (2018). Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Engineering Applications of Computational Fluid Mechanics, 12(1), 411–437. doi: 10.1080/19942060.2018.1448896
  • Ghorbani, M. A., Deo, R. C., Karimi, V., Yaseen, Z. M., & Terzi, O. (2017). Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment, 1–15. doi: 10.1007/s00477-017-1474-0
  • Jing, W., Yaseen, Z. M., Shahid, S., Saggi, M. K., Tao, H., Kisi, O., … Chau, K.-W. (2019). Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment and possible future research directions. Engineering Applications of Computational Fluid Mechanics, 13(1), 811–823. doi: 10.1080/19942060.2019.1645045
  • Khan, N., Shahid, S., Ismail, T. B., & Wang, X.-J. (2018). Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theoretical and Applied Climatology, 136(3–4), 899–913. doi: 10.1007/s00704-018-2520-7
  • Khan, N., Shahid, S., Juneng, L., Ahmed, K., Ismail, T., & Nawaz, N. (2019). Prediction of heat waves in Pakistan using quantile regression forests. Atmospheric Research, doi: 10.1016/j.atmosres.2019.01.024
  • Kumar, D., Pandey, A., Sharma, N., & Flügel, W. A. (2016). Daily suspended sediment simulation using machine learning approach. Catena, doi: 10.1016/j.catena.2015.11.013
  • Legates, D. R., & McCave Jr., G. J. (1999). Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241. doi: 10.1029/1998WR900018
  • Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., … Xoplaki, E. (2012). Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change, doi: 10.1007/s10584-012-0418-4
  • Lu, X., Ju, Y., Wu, L., Fan, J., Zhang, F., & Li, Z. (2018). Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. Journal of Hydrology, 566, 668–684. doi: 10.1016/j.jhydrol.2018.09.055
  • Majhi, B., Naidu, D., Mishra, A. P., & Satapathy, S. C. (2019). Improved prediction of daily pan evaporation using deep-LSTM model. Neural Computing and Applications, doi: 10.1007/s00521-019-04127-7
  • Moazenzadeh, R., Mohammadi, B., Shamshirband, S., & Chau, K. (2018). Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics, 12(1), 584–597. doi: 10.1080/19942060.2018.1482476
  • Moran, M. S., Rahman, A. F., Washburne, J. C., Goodrich, D. C., Weltz, M. A., & Kustas, W. P. (1996). Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agricultural and Forest Meteorology, doi: 10.1007/s12549-010-0046-9
  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 193(1032), 120–145. doi: 10.1098/rspa.1948.0037
  • Pham, B. T., Bui, D. T., & Prakash, I. (2018). Application of classification and regression trees for spatial prediction of rainfall-induced shallow landslides in the Uttarakhand area (India) using GIS. In Climate change, extreme events and disaster risk reduction (pp. 159–170). Cham: Springer.
  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Qasem, S. N., Samadianfard, S., Kheshtgar, S., Jarhan, S., Kisi, O., Shamshirband, S., & Chau, K.-W. (2019). Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Engineering Applications of Computational Fluid Mechanics, doi: 10.1080/19942060.2018.1564702
  • Raghavendra, S., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing, 19, 372–386. doi: 10.1016/j.asoc.2014.02.002
  • Sartori, E. (2000). A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Solar Energy, doi: 10.1016/S0038-092X(99)00054-7
  • Sayl, K. N., Muhammad, N. S., Yaseen, Z. M., & El-shafie, A. (2016). Estimation the physical variables of rainwater harvesting system using integrated GIS-based remote sensing approach. Water Resources Management, 30(9), 3299–3313. doi: 10.1007/s11269-016-1350-6
  • Sherrod, P. H. (2003). DTREG predictive modeling software. Software. Retrieved from http://www.dtreg.com
  • Stanhill, G. (2002). Is the class a evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? Agricultural and Forest Meteorology, doi: 10.1016/S0168-1923(02)00132-6
  • Stewart, J. B. (1984). Measurement and prediction of evaporation from forested and agricultural catchments. In Developments in agricultural and managed forest ecology (Vol. 13, pp. 1–28). New York: Elsevier.
  • Tabari, H., Marofi, S., & Sabziparvar, A. A. (2010). Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrigation Science, 28(5), 399–406. doi: 10.1007/s00271-009-0201-0
  • Vapnik, V. (1995). The nature of statistical learning theory. Data mining and knowledge discovery. Retrieved from http://infoscience.epfl.ch/record/82790/files/com02-04.pdf
  • Yaseen, Z. M., El-shafie, A., Jaafar, O., Afan, H. A., & Sayl, K. N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530, 829–844. doi: 10.1016/j.jhydrol.2015.10.038
  • Yaseen, Z. M., Ramal, M. M., Diop, L., Jaafar, O., Demir, V., & Kisi, O. (2018). Hybrid adaptive neuro-fuzzy models for water quality index estimation. Water Resources Management, doi: 10.1007/s11269-018-1915-7
  • Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.-W. (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569, 387–408. doi: 10.1016/j.jhydrol.2018.11.069