1,785
Views
2
CrossRef citations to date
0
Altmetric
Articles

Research on the mechanism of drag reduction and efficiency improvement of hydraulic retarders with bionic non-smooth surface spoilers

, , , , &
Pages 447-461 | Received 21 May 2019, Accepted 05 Jan 2020, Published online: 06 Feb 2020

References

  • Akbarian, E., Najafi, B., Jafari, M., Ardabili, S., Shamshirband, S., & Chau, K.-W. (2018). Experimental and computational fluid dynamics-based numerical simulation of using natural gas in a dual-fueled diesel engine. Engineering Applications of Computational Fluid Mechanics, 12(1), 517–534. doi: 10.1080/19942060.2018.1472670
  • An, Q., Zhang, B., Liu, G., Yang, W., Zhao, H., Wang, J., & Wang, L. (2019). Directional droplet-actuation and fluid-resistance reduction performance on the bio-inspired shark-fin-like superhydrophobic surface. Journal of the Taiwan Institute of Chemical Engineers, 97, 389–396. doi: 10.1016/j.jtice.2019.01.015
  • Bajsanski, I., Stojakovic, V., Tepavcevic, B., Jovanovic, M., & Mitov, D. (2017). An application of the shark skin denticle geometry for windbreak fence design and fabrication. Journal of Bionic Engineering, 14(3), 579–587. doi: 10.1016/S1672-6529(16)60423-7
  • Carpenter, P. (1989). Status of transition delay using compliant walls. In D. M. Bushnell & J. N. Hefner (Eds.), Viscous drag reduction in boundary layers. Progress in astronautics and aeronautics (pp. 79–113). Washington, DC: AIAA.
  • Chen, W., Min, X., Gao, D., Guo, A., & Li, H. (2018). Experimental investigation of aerodynamic forces and flow structures of bionic cylinders based on harbor seal vibrissa. Experimental Thermal and Fluid Science, 99, 169–180. doi: 10.1016/j.expthermflusci.2018.07.033
  • Chen, X., Zeng, L., & Chen, X. (2019). Eccentric correction of piston based on bionic micro-texture technology for the gap seal hydraulic cylinder. Micro & Nano Letters, 14(1), 33–37. doi: 10.1049/mnl.2018.5102
  • Cong, Q., Ren, L., Wu, L., Chen, B., Li, A., & Hu, A. (1992). Taxonomic research on geometric non smooth animal surface shapes. Transactions of the Chinese Society of Agricultural Engineering, 8(2), 7–12.
  • Dinkelacker, A, Nitschke-Kowsky, P., & Reif, W.-E. (1987). On the possibility of drag reduction with the help of longitudinal ridges in the walls. In H. W. Liepmann & R. Narasimha (Eds.), Proceedings of the IUTAM symposium on turbulence management and relaminarization (pp. 109–120). Bangalore, India: Springer, Berlin.
  • Fluent Inc. (2003). Introductory FLUENT notes for fluent v6.1.
  • Ghalandari, M., Koohshahi, E., Mohamadian, F., Shamshirband, S., & Chau, K. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264. doi: 10.1080/19942060.2019.1578696
  • Gray, J. (1936). Studies in animal locomotion VI: The propulsive powers of the dolphin. Journal of Experimental Biology, 13, 192–199.
  • Gu, Y., Zhao, G., Zheng, J., Li, Z., Liu, W., & Muhammad, F. (2014). Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface. Ocean Engineering, 81, 50–57. doi: 10.1016/j.oceaneng.2014.02.015
  • Guo, X., & Yan, Q. (2003). CN Patent No. 2554057. Beijing: National Intellectual Property Administration, PRC.
  • Hu, H., Song, B., & Liu, Z. (2011). Research at the computational methods of flow fields over riblets surface. Acta Aerodynamica Sinica, 29(3), 348–354.
  • Jiangsu university. (2008). CN Patent No. 200810020498.2. Beijing: National Intellectual Property Administration, PRC.
  • Jin, Z., Li, G., Wang, J., & Zhang, Z. (2019). Design, modeling, and experiments of the vortex-induced vibration piezoelectric energy harvester with bionic attachments. Complexity, 2019, 1–13.
  • Li, S. (2016). Research on flow status under low oil charging ratio operating condition and idling power loss mechanism in a hydraulic retarder (Master’s Thesis). Beijing Institute of Technology, Beijing.
  • Li, W. (2009). Numerical simulation of bionic wing for drag reduction (Master’s Thesis). Retrieved from http://www.cnki.net
  • Li, X., Yu, X., Cheng, X., & Miao, L. (2012). Large eddy simulation on internal flow field of hydraulic retarder and characteristics prediction. Journal of Jiangsu University, 33(4), 385–389, 419.
  • Li, Z., & Tian, T. (2010). Numerical study of flow and heat transfer in dimpled channel with simple fish-scale cavity. Journal of Thermal Science and Technology, 9(1), 23–30.
  • Liu, C. (2015). Research on reducing resistance and increasing efficiency of hydraulic torque converter with multiple biological characteristics (Master’s Thesis). Retrieved from http://www.cnki.net
  • Liu, M. (2012). Study on the resistance performance of bionic body (Master’s Thesis). Retrieved from http://www.cnki.net
  • Liu, Z., & Dong, W. (2006). The effects of the tip shape of V-groove on drag reduction and flow field characteristics by numerical analysis. Chinese Journal of Hydraulics, 21(2), 223–231.
  • Liu, E., Li, L., Wang, G., Zeng, Z., Zhao, W., & Xue, Q. (2017). Drag reduction through self-texturing compliant bionic materials. Scientific Reports, 7, ID:40038. doi: 10.1038/srep40038
  • Liu, M., Li, S., Wu, Z., Zhang, K., Wang, S., & Liang, X. (2019). Entropy generation analysis for grooved structure plate flow. European Journal of Mechanics/B Fluids, 77, 87–97. doi: 10.1016/j.euromechflu.2019.04.017
  • Liu, C., Zhu, L., Li, J., & Liang, Y. (2019). Fabrication of superhydrophobic bionic surface integrating with VOF simulation studies of liquid drop impacting. Microscopy Research and Technique, 82(5), 615–623. doi: 10.1002/jemt.23208
  • Mezghani, S., Demirci, I., Zahouani, H., & Mansori, M. (2012). The effect of groove texture patterns on piston-ring pack friction. Precision Engineering, 36, 210–217. doi: 10.1016/j.precisioneng.2011.09.008
  • Mosavi, A., Shamshirband, S., Salwana, E., Chau, K.-W., & Tah, J. (2019). Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Engineering Applications of Computational Fluid Mechanics, 13(1), 482–492. doi: 10.1080/19942060.2019.1613448
  • Mou, B., He, B.-J., Zhao, D.-X., & Chau, K.-W. (2017). Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293–309. doi: 10.1080/19942060.2017.1281845
  • Pan, G., & Huang, Q. (2010). Numerical simulation research about the drag reduction over riblet structure with different space of gyroidal object. Acta Aerodynamica Sinica, 28(3), 267–271,290.
  • Parker, R. (2004). Efficient eigensolution, dynamic response, and eigensensitivity of serpentine belt drives. Journal of Sound and Vibration, 270(1), 15–38. doi: 10.1016/S0022-460X(03)00259-1
  • Ramezanizadeh, M., Nazari, M., Ahmadi, M., & Chau, K.-W. (2019). Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Engineering Applications of Computational Fluid Mechanics, 13(1), 40–47. doi: 10.1080/19942060.2018.1518272
  • Ren, L., & Cong, X. (1992). The interface adhesion of the basic characteristics of the non-smooth surface. Transactions of the Chinese Society of Agricultural Engineering, 8(1), 16–22.
  • Ren, L., Peng, Z., Chen, Q., Zhao, G., & Wang, T. (2007). Experimental study on efficiency enhancement of centrifugal water pump by bionic non-smooth technique. Journal of Jilin University (Engineering and Technology Edition), 37(3), 575–581.
  • Schlichting, H. (1991). Boundary layer theory. Beijing: The Science Publishing Co.
  • Song, X., Lin, P., Liu, R., & Zhou, P. (2017). Skin friction reduction characteristics of variable ovoid non-smooth surfaces. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 18(1), 59–66. doi: 10.1631/jzus.A1500324
  • Tian, L. (2005). Bionic study of drag reduction between air and non-smooth surface of blunt body of revolution model (Doctoral Thesis). Retrieved from http://www.cnki.net
  • Tian, L., Ren, L., & Liu, Q. (2007). The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces. Journal of Bionic Engineering, 4(2), 109–116. doi: 10.1016/S1672-6529(07)60022-5
  • Wang, K., Wang, W., Fu, F., & Xiao, D. (2014). CN Patent No.102748410B. Beijing: National Intellectual Property Administration, PRC.
  • Wei, G. (2011). CN Patent No. 200910174842.8. Beijing: National Intellectual Property Administration, PRC.
  • Wei, W., Li, H., Zou, B., & Yan, Q. (2010). Study on braking performance and analysis of two-phase flow in vehicular hydraulic retarder. Transactions of Beijing Institute of Technology, 30(11), 1281–1284, 1320.
  • Wei, W., Mu, H., & Yan, Q. (2015). Suppression effect analysis of spoiler on idling loss of vehicular hydraulic retarder. Journal of Harbin Institute of Technology, 47(7), 73–77.
  • Wu, C., & Xu, M. (2012). Air losing experimental study of heavy vehicle hydraulic retarder. Vehicle & Power Technology, 2012(1), 23–25.
  • Wu, L., Jiao, Z., Song, Y., Liu, C., Wang, H., & Yan, Y. (2018). Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales. Scientific Reports, 8, ID:12186. doi: 10.1038/s41598-018-30490-x
  • Yan, Q., Zou, B., & Wei, W. (2011). Numerical investigation of hydraulic tractor-retarder assembly under traction work condition. Journal of Beijing Institute of Technology, 20(4), 472–477.
  • Yang, X., & Ren, L. (2003). Types and mechanisms of shape drag reduction. Transactions of the Chinese Society of Agricultural Machinery, 31(1), 130–133.
  • Zeng, M., Zhou, Y., & Ma, Y. (2018). Evaluation of sealing performance of bearing rings of roller-cone bits based on grid-shaped bionic non-smooth surface. Advances in Mechanical Engineering, 10(5), 1–21. doi: 10.1177/1687814018774187
  • Zhang, C. (2007). Drag reduction of bodies of revolution by flow control using bionic non-smooth surface (Doctoral Thesis). Retrieved from http://www.cnki.net
  • Zhang, S., & Hu, W. (2015). The numerical study of bionic wavy leading-edge wing in dynamic stall control. Chinese Journal of Hydraulics, 30(1), 24–32.
  • Zhou, H., Zhai, H., Ding, Y., & Wang, G. (2017). Numerical investigation of passive control flow to improve tire hydroplaning performance using a V-riblet non-smooth surface. Advances in Mechanical Engineering, 9(11), 1–13.