2,496
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Two-dimensional smoothed particle hydrodynamics (SPH) simulation of multiphase melting flows and associated interface behavior

, &
Pages 588-629 | Received 15 Jun 2021, Accepted 04 Jan 2022, Published online: 15 Feb 2022

References

  • Adami, S., Hu, X. Y., & Adams, N. A. (2010). A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. Journal of Computational Physics, 229(13), 5011–5021. https://doi.org/10.1016/j.jcp.2010.03.022
  • Adami, S., Hu, X. Y., & Adams, N. A. (2012). A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 231(21), 7057–7075. https://doi.org/10.1016/j.jcp.2012.05.005
  • Almasi, F., Shadloo, M. S., Hadjadj, A., Ozbulut, M., Tofighi, N., & Yildiz, M. (2019). Numerical simulations of multi-phase electro-hydrodynamics flows using a simple incompressible smoothed particle hydrodynamics method. Computers & Mathematics with Applications, 81, 772–785. https://doi.org/10.1016/j.camwa.2019.10.029
  • Alshaer, A. W., Rogers, B. D., & Li, L. (2017). Smoothed particle hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems. Computational Materials Science, 127, 161–179. https://doi.org/10.1016/j.commatsci.2016.09.004
  • Barcarolo, D. A., Le Touzé, D., Oger, G., & De Vuyst, F. (2014). Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method. Journal of Computational Physics, 273, 640–657. https://doi.org/10.1016/j.jcp.2014.05.040
  • Batchelor, C. K. (1967). An introduction to fluid dynamics. Cambridge university press.
  • Bian, X., Li, Z., & Karniadakis, G. E. (2015). Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition. Journal of Computational Physics, 297, 132–155. https://doi.org/10.1016/j.jcp.2015.04.044
  • Bonet, J., & Lok, T. S. (1999). Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering, 180(1-2), 97–115. https://doi.org/10.1016/S0045-7825(99)00051-1
  • Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335–354. https://doi.org/10.1016/0021-9991(92)90240-Y
  • Breinlinger, T., Polfer, P., Hashibon, A., & Kraft, T. (2013). Surface tension and wetting effects with smoothed particle hydrodynamics. Journal of Computational Physics, 243, 14–27. https://doi.org/10.1016/j.jcp.2013.02.038
  • Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., & Shu, C. (2015). An SPH model for multiphase flows with complex interfaces and large density differences. Journal of Computational Physics, 283, 169–188. https://doi.org/10.1016/j.jcp.2014.11.037
  • Cleary, P. W., Ha, J., Prakash, M., & Nguyen, T. (2006). 3D SPH flow predictions and validation for high pressure die casting of automotive components. Applied Mathematical Modelling, 30(11), 1406–1427. https://doi.org/10.1016/j.apm.2006.03.012
  • Cleary, P. W., & Monaghan, J. J. (1999). Conduction modelling using smoothed particle hydrodynamics. Journal of Computational Physics, 148(1), 227–264. https://doi.org/10.1006/jcph.1998.6118
  • Colagrossi, A., & Landrini, M. (2003). Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 191(2), 448–475. https://doi.org/10.1016/S0021-9991(03)00324-3
  • Colicchio, G. (2004). Violent disturbance and fragmentation of free surfaces. University of Southampton.
  • Dao, M. H., & Lou, J. (2021). Simulations of laser assisted additive manufacturing by smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 373, 113491. https://doi.org/10.1016/j.cma.2020.113491
  • Domínguez, J. M., Crespo, A. J. C., Gómez-Gesteira, M., & Marongiu, J. C. (2011). Neighbour lists in smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 67(12), 2026–2042. https://doi.org/10.1002/fld.2481
  • Dong, X., Liu, J., Liu, S., & Li, Z. (2019). Quasi-static simulation of droplet morphologies using a smoothed particle hydrodynamics multiphase model. Acta Mechanica Sinica, 35(1), 32–44. https://doi.org/10.1007/s10409-018-0812-x
  • Farrokhpanah, A., Bussmann, M., & Mostaghimi, J. (2017). New smoothed particle hydrodynamics (SPH) formulation for modeling heat conduction with solidification and melting. Numerical Heat Transfer, Part B: Fundamentals, 71(4), 299–312. https://doi.org/10.1080/10407790.2017.1293972
  • Ferrari, A., Dumbser, M., Toro, E. F., & Armanini, A. (2009). A new 3D parallel SPH scheme for free surface flows. Computers & Fluids, 38(6), 1203–1217. https://doi.org/10.1016/j.compfluid.2008.11.012
  • Frissane, H., Taddei, L., Lebaal, N., & Roth, S. (2019). SPH modeling of high velocity impact into ballistic gelatin. Development of an axis-symmetrical formulation. Mechanics of Advanced Materials and Structures, 26(22), 1881–1888. https://doi.org/10.1080/15376494.2018.1452322
  • Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389. https://doi.org/10.1093/mnras/181.3.375
  • Glimm, J., Isaacson, E., Marchesin, D., & McBryan, O. (1981). Front tracking for hyperbolic systems. Advances in Applied Mathematics, 2(1), 91–119. https://doi.org/10.1016/0196-8858(81)90040-3
  • Gnanasekaran, B., Liu, G. R., Fu, Y., Wang, G., Niu, W., & Lin, T. (2019). A smoothed particle hydrodynamics (SPH) procedure for simulating cold spray process-A study using particles. Surface and Coatings Technology, 377, 124812. https://doi.org/10.1016/j.surfcoat.2019.07.036
  • Grenier, N., Antuono, M., Colagrossi, A., Le Touzé, D., & Alessandrini, B. (2009). An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics, 228(22), 8380–8393. https://doi.org/10.1016/j.jcp.2009.08.009
  • Grenier, N., Le Touzé, D., Colagrossi, A., Antuono, M., & Colicchio, G. (2013). Viscous bubbly flows simulation with an interface SPH model. Ocean Engineering, 69, 88–102. https://doi.org/10.1016/j.oceaneng.2013.05.010
  • Han, L., & Hu, X. (2018). SPH modeling of fluid-structure interaction. Journal of Hydrodynamics, 30(1), 62–69. https://doi.org/10.1007/s42241-018-0006-9
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (vof) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Hosseini, S. M., & Feng, J. J. (2011). Pressure boundary conditions for computing incompressible flows with SPH. Journal of Computational Physics, 230(19), 7473–7487. https://doi.org/10.1016/j.jcp.2011.06.013
  • Hu, X. Y., & Adams, N. A. (2006). A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 213(2), 844–861. https://doi.org/10.1016/j.jcp.2005.09.001
  • Huang, C., & Liu, M. B. (2020). Modeling hydrate-bearing sediment with a mixed smoothed particle hydrodynamics. Computational Mechanics, 66(4), 877–891. https://doi.org/10.1007/s00466-020-01895-1
  • Hysing, S. R., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., & Tobiska, L. (2009). Quantitative benchmark computations of two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 60(11), 1259–1288. https://doi.org/10.1002/fld.1934
  • Jing, H. B., & Ding, X. (2005). On criterions for smoothed particle hydrodynamics kernels in stable field. Journal of Computational Physics, 202(2), 699–709. https://doi.org/10.1016/j.jcp.2004.08.002
  • Liu, G. R., & Liu, M. B. (2003). Smoothed particle hydrodynamics: A meshfree particle method. World Scientific.
  • Liu, M. B., Liu, G. R., Lam, K. Y., & Zong, Z. (2003). Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 30(2), 106–118. https://doi.org/10.1007/s00466-002-0371-6
  • Liu, M. B., Zhang, Z. L., & Feng, D. (2017). A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Computational Mechanics, 60(3), 513–529. https://doi.org/10.1007/s00466-017-1420-5
  • Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82, 1013–1024. https://doi.org/10.1086/112164
  • Meng, Z. F., Wang, P. P., Zhang, A. M., Ming, F. R., & Sun, P. N. (2020). A multiphase SPH model based on roe’s approximate riemann solver for hydraulic flows with complex interface. Computer Methods in Applied Mechanics and Engineering, 365, 112999. https://doi.org/10.1016/j.cma.2020.112999
  • Ming, F. R., Sun, P. N., & Zhang, A. M. (2017). Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model. Meccanica, 52(11), 2665–2684. https://doi.org/10.1007/s11012-017-0634-0
  • Molteni, D., & Colagrossi, A. (2009). A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Computer Physics Communications, 180(6), 861–872. https://doi.org/10.1016/j.cpc.2008.12.004
  • Monaghan, J. J. (1989). On the problem of penetration in particle methods. Journal of Computational Physics, 82(1), 1–15. https://doi.org/10.1016/0021-9991(89)90032-6
  • Monaghan, J. J. (1994). Simulating free surface flows with SPH. Journal of Computational Physics, 110(2), 399–406. https://doi.org/10.1006/jcph.1994.1034
  • Monaghan, J. J., & Gingold, R. A. (1983). Shock simulation by the particle method SPH. Journal of Computational Physics, 52(2), 374–389. https://doi.org/10.1016/0021-9991(83)90036-0
  • Monaghan, J. J., Huppert, H. E., & Worster, M. G. (2005). Solidification using smoothed particle hydrodynamics. Journal of Computational Physics, 206(2), 684–705. https://doi.org/10.1016/j.jcp.2004.11.039
  • Morris, J. P. (2000). Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 33(3), 333–353. https://doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
  • Morris, J. P., Fox, P. J., & Zhu, Y. (1997). Modeling low reynolds number incompressible flows using SPH. Journal of Computational Physics, 136(1), 214–226. https://doi.org/10.1006/jcph.1997.5776
  • Mosavi, A., Shamshirband, S., Salwana, E., Chau, K. W., & Tah, J. H. (2019). Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Engineering Applications of Computational Fluid Mechanics, 13(1), 482–492. https://doi.org/10.1080/19942060.2019.1613448
  • Russell, M. A., Souto-Iglesias, A., & Zohdi, T. (2018). Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Computer Methods in Applied Mechanics and Engineering, 341, 163–187. https://doi.org/10.1016/j.cma.2018.06.033
  • Shao, J. R., Li, H. Q., Liu, G. R., & Liu, M. B. (2012). An improved SPH method for modeling liquid sloshing dynamics. Computers & Structures, 100-101, 18–26. https://doi.org/10.1016/j.compstruc.2012.02.005
  • Tartakovsky, A., & Meakin, P. (2005). Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E, 72(2), 026301. https://doi.org/10.1103/PhysRevE.72.026301
  • Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98. https://doi.org/10.1103/PhysRev.159.98
  • Verma, A. K., Chandra, S., & Dhindaw, B. K. (2004). An alternative fixed grid method for solution of the classical one-phase Stefan problem. Applied Mathematics and Computation, 158(2), 573–584. https://doi.org/10.1016/j.amc.2003.10.001
  • Viccione, G., Bovolin, V., & Carratelli, E. P. (2008). Defining and optimizing algorithms for neighbouring particle identification in SPH fluid simulations. International Journal for Numerical Methods in Fluids, 58(6), 625–638. https://doi.org/10.1002/fld.1761
  • Weirather, J., Rozov, V., Wille, M., Schuler, P., Seidel, C., Adams, N. A., & Zaeh, M. F. (2019). A smoothed particle hydrodynamics model for laser beam melting of Ni-based alloy 718. Computers & Mathematics with Applications, 78(7), 2377–2394. https://doi.org/10.1016/j.camwa.2018.10.020
  • Winkler, D., Rezavand, M., & Rauch, W. (2018). Neighbour lists for smoothed particle hydrodynamics on GPUs. Computer Physics Communications, 225, 140–148. https://doi.org/10.1016/j.cpc.2017.12.014
  • Xia, X., & Liang, Q. (2016). A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations. Environmental Modelling & Software, 75, 28–43. https://doi.org/10.1016/j.envsoft.2015.10.002
  • Xu, R., Stansby, P., & Laurence, D. (2009). Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. Journal of Computational Physics, 228(18), 6703–6725. https://doi.org/10.1016/j.jcp.2009.05.032
  • Yeganehdoust, F., Yaghoubi, M., Emdad, H., & Ordoubadi, M. (2016). Numerical study of multiphase droplet dynamics and contact angles by smoothed particle hydrodynamics. Applied Mathematical Modelling, 40(19-20), 8493–8512. https://doi.org/10.1016/j.apm.2016.05.021
  • Zhang, A., Sun, P., & Ming, F. (2015). An SPH modeling of bubble rising and coalescing in three dimensions. Computer Methods in Applied Mechanics and Engineering, 294, 189–209. https://doi.org/10.1016/j.cma.2015.05.014
  • Zhang, A., Wen-shan, Y., & Xiong-liang, Y. (2012). Numerical simulation of underwater contact explosion. Applied Ocean Research, 34, 10–20. https://doi.org/10.1016/j.apor.2011.07.009
  • Zhang, C., Rezavand, M., & Hu, X. (2021). A multi-resolution SPH method for fluid-structure interactions. Journal of Computational Physics, 429, 110028. https://doi.org/10.1016/j.jcp.2020.110028
  • Zhang, M. Y., Zhang, H., & Zheng, L. L. (2008). Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method. International Journal of Heat and Mass Transfer, 51(13-14), 3410–3419. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.009