1,902
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Local entropy generation model for numerical CFD analysis of fluid flows through porous media, under laminar and turbulent regimes

ORCID Icon, ORCID Icon & ORCID Icon
Pages 804-825 | Received 14 Sep 2021, Accepted 06 Feb 2022, Published online: 22 Mar 2022

References

  • Alazmi, B., & Vafai, K. (2000). Analysis of variants within the porous media transport models. Journal of Heat Transfer, 122(2), 303–326. https://doi.org/10.1115/1.521468
  • Avila-Marin, A. L. (2011). Volumetric receivers in solar thermal power plants with central receiver system technology: A review. Solar Energy, 85(5), 891–910. https://doi.org/10.1016/j.solener.2011.02.002
  • Avila-marin, A. L., Caliot, C., Alvarez De Lara, M., Fernandez-Reche, J., Montes, M. J., & Martinez-tarifa, A. (2018). Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers. Renewable Energy, 135(2019), 908–919. https://doi.org/10.1016/j.renene.2018.12.061
  • Avila-marin, A. L., Caliot, C., Flamant, G., Alvarez De Lara, M., & Fernandez-Reche, J. (2018). Numerical determination of the heat transfer coefficient for volumetric air receivers with wire meshes. Solar Energy, 162(December 2017), 317–329. https://doi.org/10.1016/j.solener.2018.01.034
  • Avila-Marin, A. L., Fernandez-reche, J., & Martinez-tarifa, A. (2019). Modelling strategies for porous structures as solar receivers in central receiver systems: A review. Renewable and Sustainable Energy Reviews, 111(November 2018), 15–33. https://doi.org/10.1016/j.rser.2019.03.059
  • Bai, F. (2010). One dimensional thermal analysis of silicon carbide ceramic foam used for solar air receiver. International Journal of Thermal Sciences, 49(12), 2400–2404. https://doi.org/10.1016/j.ijthermalsci.2010.08.010
  • Baumann, A., Hoch, D., Behringer, J., & Niessner, J. (2020). Macro-scale modeling and simulation of two-phase flow in fibrous liquid aerosol filters. Engineering Applications of Computational Fluid Mechanics, 14(1), 1325–1336. https://doi.org/10.1080/19942060.2020.1828174
  • Bejan, A. (1980). Second law analysis in heat transfer. Energy, 5(8–9), 720–732. https://doi.org/10.1016/0360-5442(80)90091-2
  • Bejan, A. (1995). Entropy generation minimization (1st ed.). CRC Press.
  • Bejan, A. (2013). Convection heat transfer (4th ed.). Hoboken, NJ: John Wiley & Sons Inc.
  • Betchen, L. J., & Straatman, A. G. (2008). The development of a volume-averaged entropy-generation function for nonequilibrium heat transfer in high-conductivity porous foams. Numerical Heat Transfer, Part B: Fundamentals, 53(5), 412–436. https://doi.org/10.1080/10407790801960786
  • Betchen, L. J., & Straatman, A. G. (2014). Entropy generation-based computational geometry optimization of the pore structure of high-conductivity graphite foams for use in enhanced heat transfer devices. Computers & Fluids, 103, 49–70. https://doi.org/10.1016/j.compfluid.2014.07.012
  • Calderón-Vásquez, I., Cortés, E., García, J., Segovia, V., Caroca, A., Sarmiento, C., Barraza, R., & Cardemil, J. M. (2021). Review on modeling approaches for packed-bed thermal storage systems. Renewable and Sustainable Energy Reviews, 143(July 2021), 22. https://doi.org/10.1016/j.rser.2021.110902
  • Cantwell, B. J. (2018). Fundamentals of compressible flow. In International Journal of Heat and Fluid Flow. Department of Aeronautics and Astronautics, Stanford University, California. https://doi.org/10.1016/0142-727x(83)90067-x
  • Capuano, R., Fend, T., Schwarzbözl, P., Smirnova, O., Stadler, H., Hoffschmidt, B., & Pitz-Paal, R. (2016). Numerical models of advanced ceramic absorbers for volumetric solar receivers. Renewable and Sustainable Energy Reviews, 58, 656–665. https://doi.org/10.1016/j.rser.2015.12.068
  • Currie, I. G. (2012). Fundamental mechanics of fluids (4th ed.). CRC Press.
  • de Lemos, M. (2012). Turbulence in porous media modeling and applications (2nd ed.). Elsevier Academic Press.
  • de Lemos, M., & Pedras, M. H. J. (2001). Recent mathematical models for turbulent flow in saturated rigid porous media. Journal of Fluids Engineering, 123(4), 935–940. https://doi.org/10.1115/1.1413243
  • Ergun, S., & Orning, A. A. (1949). Fluid flow through randomly packed columns and fluidized beds. Industrial & Engineering Chemistry, 41(6), 1179–1184. https://doi.org/10.1021/ie50474a011
  • Fend, T., Hoffschmidt, B., Pitz-Paal, R., Reutter, O., & Rietbrock, P. (2004). Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties. Energy, 29(5–6), 823–833. https://doi.org/10.1016/S0360-5442(03)00188-9
  • Feng, Y., & Kleinstreuer, C. (2010). Nanofluid convective heat transfer in a parallel-disk system. International Journal of Heat and Mass Transfer, 53(21–22), 4619–4628. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.031
  • Gersten, K., & Herwig, H. (1992). Strömungsmechanik. Vieweg.
  • Ghalandari, M., Mirzadeh Koohshahi, E., Mohamadian, F., Shamshirband, S., & Chau, K. W. (2019). Numerical simulation of nanofluid flow inside a root canal. Engineering Applications of Computational Fluid Mechanics, 13(1), 254–264. https://doi.org/10.1080/19942060.2019.1578696
  • Han, L., Lu, C., Yumashev, A., Bahrami, D., Kalbasi, R., Jahangiri, M., Karimipour, A., Band, S. S., Chau, K. W., & Mosavi, A. (2021). Numerical investigation of magnetic field on forced convection heat transfer and entropy generation in a microchannel with trapezoidal ribs. Engineering Applications of Computational Fluid Mechanics, 15(1), 1746–1760. https://doi.org/10.1080/19942060.2021.1984991
  • Hischier, I., Leumann, P., & Steinfeld, A. (2012). Experimental and numerical analyses of a pressurized air receiver for solar-driven gas turbines. Journal of Solar Energy Engineering, 134(2), 1–8. https://doi.org/10.1115/1.4005446
  • Ho, C. K. (2016). A review of high-temperature particle receivers for concentrating solar power. Applied Thermal Engineering, 109, 958–969. https://doi.org/10.1016/j.applthermaleng.2016.04.103
  • Hsu, C. T., & Cheng, P. (1990). Thermal dispersion in a porous medium. International Journal of Heat and Mass Transfer, 33(8), 1587–1597. https://doi.org/10.1016/0017-9310(90)90015-M
  • Kalita, J. C., & Dass, A. K. (2011). Higher order compact simulation of double-diffusive natural convection in a vertical porous annulus. Engineering Applications of Computational Fluid Mechanics, 5(3), 357–371. https://doi.org/10.1080/19942060.2011.11015378
  • Kaviany, M. (1999). Principles of heat transfer in porous media. Springer. https://doi.org/10.1007/b22134
  • Khan, F. A., & Straatman, A. G. (2016). Closure of a macroscopic turbulence and non-equilibrium turbulent heat and mass transfer model for a porous media comprised of randomly packed spheres. International Journal of Heat and Mass Transfer, 101, 1003–1015. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.106
  • Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47(10–11), 2205–2215. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.025
  • Kock, F., & Herwig, H. (2005). Entropy production calculation for turbulent shear flows and their implementation in cfd codes. International Journal of Heat and Fluid Flow, 26(4 SPEC. ISS.), 672–680. https://doi.org/10.1016/j.ijheatfluidflow.2005.03.005
  • Kribus, A., Gray, Y., Grijnevich, M., Mittelman, G., Mey-Cloutier, S., & Caliot, C. (2014). The promise and challenge of solar volumetric absorbers. Solar Energy, 110, 463–481. https://doi.org/10.1016/j.solener.2014.09.035
  • Kribus, A., Ries, H., & Spirkl, W. (1996). Inherent limitations of volumetric solar receivers. Journal of Solar Energy Engineering, 118(3), 151–155. https://doi.org/10.1115/1.2870891
  • Kun-Can, Z., Tong, W., Hai-Cheng, L., Zhi-Jun, G., & Wen-Fei, W. (2017). Fractal analysis of flow resistance in random porous media based on the staggered pore-throat model. International Journal of Heat and Mass Transfer, 115, 225–231. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.031
  • Kuwahara, F., Nakayama, A., & Koyama, H. (1996). A numerical study of thermal dispersion in porous media. Journal of Heat Transfer, 118(3), 756–761. https://doi.org/10.1115/1.2822696
  • Lee, K., & Howell, J. R. (1987, March 22–27). Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. Proceedings of the 1987 ASME-JSME. Thermal engineering joint conference, Honolulu, Vol. 2 (pp. 377–386).
  • Liu, G., Gong, W., Wu, H., & Lin, A. (2021). Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine. Engineering Applications of Computational Fluid Mechanics, 15(1), 476–489. https://doi.org/10.1080/19942060.2021.1884600
  • Mahian, O., Kianifar, A., Kleinstreuer, C., Al-Nimr, M. A., Pop, I., Sahin, A. Z., & Wongwises, S. (2013). A review of entropy generation in nanofluid flow. International Journal of Heat and Mass Transfer, 65, 514–532. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.010
  • Moghaddami, M., Mohammadzade, A., & Esfehani, S. A. V. (2011). Second law analysis of nanofluid flow. Energy Conversion and Management, 52(2), 1397–1405. https://doi.org/10.1016/j.enconman.2010.10.002
  • Nagano, Y., & Kim, C. (1988). A two-equation model for heat transport in wall turbulent shear flows. Journal of Heat Transfer, 110(3), 583–589. https://doi.org/10.1115/1.3250532
  • Nakayama, A., & Kuwahara, F. (1999). A macroscopic turbulence model for flow in a porous medium. Journal of Fluids Engineering, 121(2), 427–433. https://doi.org/10.1115/1.2822227
  • OpenFOAM v9. (2021). The OpenFOAM Foundation Ltd. https://openfoam.org/
  • Pabst, C., Feckler, G., Schmitz, S., Smirnova, O., Capuano, R., Hirth, P., & Fend, T. (2017). Experimental performance of an advanced metal volumetric air receiver for solar towers. Renewable Energy, 106, 91–98. https://doi.org/10.1016/j.renene.2017.01.016
  • Patankar, S. V. (1980). Numerical Heat Transfer and fluid flow (1st ed.). CRC Press. https://doi.org/10.1201/9781482234213
  • Patankar, S. V. (1981). A calculation procedure for two-dimensional elliptic situations. Numerical Heat Transfer, 4(4), 409–425. https://doi.org/10.1080/01495728108961801
  • Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787–1806. https://doi.org/10.1016/0017-9310(72)90054-3
  • Pedras, M. H. J., & De Lemos, M. (2001). Macroscopic turbulence modeling for incompressible flow through undeformable porous media. International Journal of Heat and Mass Transfer, 44(6), 1081–1093. https://doi.org/10.1016/S0017-9310(00)00202-7
  • Quintard, M., & Whitaker, S. (1994). Transport in ordered and disordered porous media II: Generalized volume averaging. Transport in Porous Media, 14(2), 179–206. https://doi.org/10.1007/BF00615200
  • Reynolds, O., M, A., L, D., & F, R. (1895). On the dynamical theory of incompressible viscous Fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London A, 10(186), 123–164. https://doi.org/10.1098/rsta.1895.0004
  • Saito, M. B., & De Lemos, M. (2005). Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media. International Communications in Heat and Mass Transfer, 32(5), 666–676. https://doi.org/10.1016/j.icheatmasstransfer.2004.06.013
  • Salih, S. Q., Aldlemy, M. S., Rasani, M. R., Ariffin, A. K., Ya, T. M. Y. S. T., Al-Ansari, N., Yaseen, Z. M., & Chau, K. W. (2019). Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method. Engineering Applications of Computational Fluid Mechanics, 13(1), 860–877. https://doi.org/10.1080/19942060.2019.1652209
  • Sarmiento, C., Cardemil, J. M., Calderón, W., & Herrmann, B. (2019, November 4–7). Heat transfer framework for selecting the structure of open volumetric air receivers. Proceedings ISES Solar World Congress 2019, Santiago, Chile. https://doi.org/10.18086/swc.2019.18.11
  • Sciacovelli, A., Verda, V., & Sciubba, E. (2015). Entropy generation analysis as a design tool—A review. Renewable and Sustainable Energy Reviews, 43, 1167–1181. https://doi.org/10.1016/j.rser.2014.11.104
  • Singh, S., Sørensen, K., Condra, T., Batz, S. S., & Kristensen, K. (2019). Investigation on transient performance of a large-scale packed-bed thermal energy storage. Applied Energy, 239(October 2018), 1114–1129. https://doi.org/10.1016/j.apenergy.2019.01.260
  • Slattery, J. C. (1967). Flow of viscoelastic Fluids through porous media. AIChE Journal, 13(6), 1066–1071. https://doi.org/10.1002/aic.690130606
  • Song, Z., & Liu, B. (2018). Optimization design for tandem cascades of compressors based on adaptive particle swarm optimization. Engineering Applications of Computational Fluid Mechanics, 12(1), 535–552. https://doi.org/10.1080/19942060.2018.1474806
  • Spelling, J., Favrat, D., Martin, A., & Augsburger, G. (2012). Thermoeconomic optimization of a combined-cycle solar tower power plant. Energy, 41(1), 113–120. https://doi.org/10.1016/j.energy.2011.03.073
  • Sutherland, W. (1893). LII. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223), 507–531. https://doi.org/10.1080/14786449308620508
  • Teruel, F. E., & Rizwan-uddin. (2009a). A new turbulence model for porous media flows. Part I: Constitutive equations and model closure. International Journal of Heat and Mass Transfer, 52(19–20), 4264–4272. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.017
  • Teruel, F. E., & Rizwan-uddin. (2009b). A new turbulence model for porous media flows. Part II: Analysis and validation using microscopic simulations. International Journal of Heat and Mass Transfer, 52(21–22), 5193–5203. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.023
  • Ting, T. W., Hung, Y. M., & Guo, N. (2015). Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels. International Journal of Heat and Mass Transfer, 81, 862–877. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.006
  • Torabi, M., Torabi, M., Eftekhari, M., & Peterson, G. P. (2019). Fluid flow, heat transfer and entropy generation analyses of turbulent forced convection through isotropic porous media using RANS models. International Journal of Heat and Mass Transfer, 132, 443–461. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.020
  • Torabi, M., Torabi, M., & Peterson, G. P. (2017). Heat transfer and entropy generation analyses of forced convection through porous media using pore scale modeling. Journal of Heat Transfer, 139(1), 1–10. https://doi.org/10.1115/1.4034181
  • Vafai, K. (2015). Handbook of porous media. In CRC (Ed.), Transport in porous media (Vol. 93, Issue 3). https://doi.org/10.1007/s11242-012-9985-0
  • Villafán-Vidales, H. I., Abanades, S., Caliot, C., & Romero-Paredes, H. (2011). Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver. Applied Thermal Engineering, 31(16), 3377–3386. https://doi.org/10.1016/j.applthermaleng.2011.06.022
  • Wilcox, D. C. (2006). Turbulence modeling for CFD. DCW Industries.
  • Wu, J., & Yu, B. (2007). A fractal resistance model for flow through porous media. International Journal of Heat and Mass Transfer, 50(19–20), 3925–3932. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.009
  • Wu, Z., Caliot, C., Bai, F., Flamant, G., Wang, Z., Zhang, J., & Tian, C. (2010). Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Applied Energy, 87(2), 504–513. https://doi.org/10.1016/j.apenergy.2009.08.009
  • Wu, Z., Caliot, C., Flamant, G., & Wang, Z. (2011). Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers. Solar Energy, 85(9), 2374–2385. https://doi.org/10.1016/j.solener.2011.06.030
  • Xu, C., Song, Z., Chen, L. d., & Zhen, Y. (2011). Numerical investigation on porous media heat transfer in a solar tower receiver. Renewable Energy, 36(3), 1138–1144. https://doi.org/10.1016/j.renene.2010.09.017
  • Younis, L. B., & Viskanta, R. (1993). Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam. International Journal of Heat and Mass Transfer, 36(6), 1425–1434. https://doi.org/10.1016/S0017-9310(05)80053-5