3,163
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Aerodynamic noise prediction of a high-speed centrifugal fan considering impeller-eccentric effect

ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 780-803 | Received 11 Sep 2021, Accepted 08 Feb 2022, Published online: 14 Mar 2022

References

  • Abadi, A. M. E., Sadi, M., Farzaneh-Gord, M., Ahmadi, M. H., & Chau, K. W. (2020). A numerical and experimental study on the energy efficiency of a regenerative heat and mass exchanger utilizing the counter-flow Maisotsenko cycle. Engineering Applications of Computational Fluid Mechanics, 14(1), 1–12. https://doi.org/10.1080/19942060.2019.1617193
  • Alford, J. S. (1965). Protecting turbomachinery from self-excited rotor whirl. Journal of Engineering for Power, 87(10), 333–343. https://doi.org/10.1115/1.3678270
  • Azzam, T., Paridaens, R., Ravelet, F., Khelladi, S., Oualli, H., & Bakir, F. (2017). Experimental investigation of an actively controlled automotive cooling fan using steady air injection in the leakage gap. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 231(1), 59–67. https://doi.org/10.1177/0957650916688120
  • Ballesteros-Tajadura, R., Hurtado-Cruz, J. P., & Santolaria-Morros, C. (2006). Numerical calculation of pressure fluctuations in the volute of a centrifugal fan. Journal of Fluids Engineering, 128(2), 359–369. https://doi.org/10.1115/1.2170121
  • Basu, D., Das, K., Painter, S. L., Howard, L. D., & Green, S. T. (2008). Assessment of DES multiscale turbulence models for prediction of flow and heat transfer in an axial-channel rod configuration. International conference on nuclear engineering, Orlando, FL, USA, May 11–15, 2008.
  • Broatch, A., Galindo, J., Navarro, R., García-Tíscar, J., Daglish, A., & Sharma, R. K. (2015). Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics, 9(1), 12–20. https://doi.org/10.1080/19942060.2015.1004788
  • Burgmann, S., Fischer, T., Rudersdorf, M., Roos, A., Heinzel, A., & Seume, J. (2017). Development of a centrifugal fan with increased part-load efficiency for fuel cell applications. Renewable Energy, 116, 815–826. https://doi.org/10.1016/j.renene.2017.09.075
  • Cao, W. D., Yao, L. J., Liu, B., & Zhang, Y. N. (2017). The influence of impeller eccentricity on centrifugal pump. Advances in Mechanical Engineering, 9(9), 1–17. https://doi.org/10.1177/1687814017722496
  • Caro, S., Ploumhans, P., Gallez, X., Sandboge, R., & Matthes, M. (2005). A new CAA formulation based on Lighthill’s analogy applied to an idealized automotive HVAC blower using AcuSolve and ACTRAN/LA.
  • Chen, J., He, Y., Gui, L., Wang, C., Chen, L., & Li, Y. (2018). Aerodynamic noise prediction of a centrifugal fan considering the volute effect using IBEM. Applied Acoustics, 132(March), 182–190. https://doi.org/10.1016/j.apacoust.2017.10.015
  • Chen, P., Nayagam, M. S., & Bolton, A. N. (1996). Unstable flow in centrifugal fans. Journal of Fluids Engineering, 118(1), 128–133. https://doi.org/10.1115/1.2817490
  • Chen, S. Y., Xi, S., & Wang, C. X. (2007). Three-dimensional numerical simulation of the internal flow in the centrifugal fan. Fluid Machinery, 9(9), 22–25. https://doi.org/10.3969/j.issn.1005-0329.2007.09.006
  • Edward, C., Andrea, C., Francesco, J., Fabio, M. Z., & avide, P. D. (2018). Effect of rotor deformation and blade loading on the leakage noise in low-speed axial fans. Journal of Sound and Vibration, 433, 99–123. https://doi.org/10.1016/j.jsv.2018.07.005
  • Gao, X. P., Zhang, H., Liu, J. J., Sun, B. W., & Tian, Y. (2018). Numerical investigation of flow in a vertical pipe inlet/outlet with a horizontal anti-vortex plate: Effect of diversion orifices height and divergence angle. Engineering Applications of Computational Fluid Mechanics, 12(1), 182–194. https://doi.org/10.1080/19942060.2017.1387608
  • Ghalandari, M., Ziamolki, A., Mosavi, A., Shamshirband, S., Chau, K. W., & Bornassi, S. (2019). Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experiments. Engineering Applications of Computational Fluid Mechanics, 13(1), 892–904. https://doi.org/10.1080/19942060.2019.1649196
  • Guo, Z. J., Liu, T. H., Hemida, H., Chen, Z. W., & Liu, H. K. (2020). Numerical simulation of the aerodynamic characteristics of double unit train. Engineering Applications of Computational Fluid Mechanics, 14(1), 910–922. https://doi.org/10.1080/19942060.2020.1784798
  • Holste, F., & Neise, W. (1993). Spring Workshop Center of Acoustics and Vibration. Pennsylvania State University, Pennsylvania, PA, USA, 22–23 April, DLR.
  • Huang, J. Y., Zhang, K., Li, H. Y., Wang, A. R., & Yang, M. Y. (2021). Numerical simulation of aerodynamic noise and noise reduction of range hood. Applied Acoustics, 175(3), 107806. https://doi.org/10.1016/j.apacoust.2020.107806
  • Kameier, F., & Neise, W. (1997). Rotating blade flow instability as a source of noise in axial turbomachines. Journal of Sound and Vibration, 203(5), 833–853. https://doi.org/10.1006/jsvi.1997.0902
  • Kang, Y. S., & Kang, S. H. (2010). Prediction of the nonuniform tip clearance effect on the axial compressor flow field. Journal of Fluids Engineering, 132(5), 9. https://doi.org/10.1115/1.4001553
  • Kierkegaard, A., West, A., & Caro, S. (2016, 30 May–1 June). HVAC noise simulations using direct and hybrid methods. 22nd AIAA/CEAS Aeroacoustics conference, Lyon, France.
  • Kim, H. S., Cho, M. H., & Song, S. J. (2003). Stability analysis of a turbine rotor system with Alford forces. Journal of Sound and Vibration, 260(4), 167–182. https://doi.org/10.1016/S0022-460X(02)00926-4
  • Kissner, C. A., & Guérin, S. (2019). Influence of wake and background turbulence on predicted fan broadband noise. AIAA Journal, 58(8), 1–14. https://doi.org/10.2514/1.J058148
  • Krain, H. (2005). Review of centrifugal compressor’s application and development. Journal of Turbomachinery, 127(1), 25–34. https://doi.org/10.1115/1.1791280
  • Li, W., Ji, L., Shi, W., Zhou, L., Agarwal, R., & Mahmouda, E. (2020). Numerical investigation of internal flow characteristics in a mixed-flow pump with eccentric impeller. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(9), 1–19. https://doi.org/10.1007/s40430-020-02536-7
  • Liu, C., Cao, Y., Zhang, W., Ming, P., & Liu, Y. (2019). Numerical and experimental investigations of centrifugal compressor BPF noise. Applied Acoustics, 150(July), 290–301. https://doi.org/10.1016/j.apacoust.2019.02.017
  • Liu, H., Jiang, B. Y., Wang, J., Yang, X. P., & Xiao, Q. H. (2021). Numerical and experimental investigations on non-axisymmetric D-type inlet nozzle for a squirrel-cage fan. Engineering Applications of Computational Fluid Mechanics, 15(1), 363–376. https://doi.org/10.1080/19942060.2021.1883115
  • Liu, Q. H., Qi, D., & Mao, Y. J. (2006). Numerical calculation of centrifugal fan noise. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(8), 1167–1177. https://doi.org/10.1243/09544062JMES211
  • Lu, F. A., Qi, D. T., Wang, X. J., Zhou, Z., & Zhou, H. H. (2012). A numerical optimization on the vibroacoustics of a centrifugal fan volute. Journal of Sound and Vibration, 331(10), 2365–2385. https://doi.org/10.1016/j.jsv.2011.12.035
  • Maduka, M., & Li, C. W. (2021). Numerical study of ducted turbines in bi-directional tidal flows. Engineering Applications of Computational Fluid Mechanics, 15(1), 194–209. https://doi.org/10.1080/19942060.2021.1872706
  • Mao, Y., Fan, C., Zhang, Z., Song, S., & Xu, C. (2021). Control of noise generated from centrifugal refrigeration compressor. Mechanical Systems and Signal Processing, 152, 107466. https://doi.org/10.1016/j.ymssp.2020.107466
  • Marinić-Kragić, I., Vučina, D., & Milas, Z. (2016). 3D shape optimization of fan vanes for multiple operating regimes subject to efficiency and noise-related excellence criteria and constraints. Engineering Applications of Computational Fluid Mechanics, 10(1), 209–227. https://doi.org/10.1080/19942060.2016.1149101
  • Meakhail, T., & Park, S. O. (2005). A study of impeller-diffuser-volute interaction in a centrifugal fan. Journal of Turbomachinery, 127(1), 84–90. https://doi.org/10.1115/1.1812318
  • Navarro García, R. (2018). Influence of tip clearance on flow behavior and noise generation. Predicting Flow-Induced Acoustics at Near-Stall Conditions in an Automotive Turbocharger Compressor, 41–58. https://doi.org/10.1007/978-3-319-72248-1_3
  • Oberai, A. A., Roknaldin, F., & Hughes, T. (2000). Computational procedures for determining structural-acoustic response due to hydrodynamic sources. Computer Methods in Applied Mechanics & Engineering, 190(3/4), 345–361. https://doi.org/10.1016/S0045-7825(00)00206-1
  • Oberai, A. A., Roknaldin, F., & Hughes, T. (2012). Computation of trailing-edge noise due to turbulent flow over an airfoil. AIAA Journal, 40(11), 2206–2216. https://doi.org/10.2514/2.1582
  • Ottersten, M., Yao, H. D., & Davidson, L. (2021). Tonal noise of voluteless centrifugal fan generated by turbulence stemming from upstream inlet gap. Physics of Fluids, 33(7), 075110. https://doi.org/10.1063/5.0055242
  • Öztürk, İ, Çetin, C., & Yavuz, M. M. (2019). Effect of fan and shroud configurations on underhood flow characteristics of an agricultural tractor. Engineering Applications of Computational Fluid Mechanics, 13(1), 506–518. https://doi.org/10.1080/19942060.2019.1617192
  • Qi, D. T., Mao, Y. J., Liu, X. L., & Yuan, M. J. (2009). Experimental study on the noise reduction of an industrial forward-curved blades centrifugal fan. Applied Acoustics, 70(8), 1041–1050. https://doi.org/10.1016/j.apacoust.2009.03.002
  • Rajan, G. K., & Cimbala, J. M. (2016). Computational and theoretical analyses of the precessing vortex rope in a simplified draft tube of a scaled model of a Francis turbine. Journal of Fluids Engineering, 139(2), 1–12. https://doi.org/10.1115/1.4034693.
  • Sezen, S., Atlar, M., & Fitzsimmons, P. (2021). Prediction of cavitating propeller underwater radiated noise using RANS & DES-based hybrid method. Ships and Offshore Structures, (3), 1–8. https://doi.org/10.1080/17445302.2021.1954326
  • Sharma, S., García-Tíscar, J., Allport, J. M., Barrans, S., & Nickson, A. K. (2020). Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor. Aerospace Science and Technology, 98, 105697. https://doi.org/10.1016/j.ast.2020.105697
  • Shen, Y., Li, Y., Wang, H., Shen, W., Chen, Y., & Si, H. (2019). Numerical simulation and performance optimization of the centrifugal fan in a vacuum cleaner. Modern Physics Letters B, 33(35), 1950440. https://doi.org/10.1142/S0217984919504402
  • Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Jiang, Z. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3), 227–238. https://doi.org/10.1016/0045-7930(94)00032-T
  • Spalart, P. R. (2009). Detached-eddy simulation. Annual Review of Fluid Mechanics, 41(1), 181–202. https://doi.org/10.1146/annurev.fluid.010908.165130
  • Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical & Computational Fluid Dynamics, 20(3), 181–195. https://doi.org/10.1007/s00162-006-0015-0
  • Spalart, P. R., Jou, W. H., Strelets, M., & Allmaras, S. R. (1997, August 4–8). Comments on the feasibility of LES for winds, and on a hybrid RANS/LES approach. Advances in DNS/LES, Louisiana Tech University, Ruston, Louisiana, USA.
  • Strelets, M. (2001, January 8–11). Detached eddy simulation of massively separated flows. 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.
  • Tao, R., Xiao, R. F., & Liu, W. C. (2018). Investigation of the flow characteristics in a main nuclear power plant pump with eccentric impeller. Nuclear Engineering and Design, 327(February), 70–81. https://doi.org/10.1016/j.nucengdes.2017.11.040
  • Yan, T., Qu, J. Y., Sun, X. F., Chen, Y., Hu, Q. B., & Li, W. (2020). Numerical evaluation on the decaying swirling flow in a multi-lobed swirl generator. Engineering Applications of Computational Fluid Mechanics, 14(1), 1198–1214. https://doi.org/10.1080/19942060.2020.1816494
  • Young, A. M., Cao, T., Day, I. J., & Longley, J. P. (2017). Accounting for eccentricity in compressor performance predictions. Journal of Turbomachinery, 139(9), 091008. https://doi.org/10.1115/1.4036201
  • Zhang, W., Chen, C., Wang, Z., Li, Y., & Guo, C. (2021). Numerical simulation of structural response during propeller-rudder interaction. Engineering Applications of Computational Fluid Mechanics, 15(1), 584–612. https://doi.org/10.1080/19942060.2021.1899989
  • Zhang, C. X., Kim, S. I., & Hassan, I. G. (2008). Unsteady simulations for an advanced-louver cooling scheme. Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air (Vol. 6). Turbomachinery, Parts A, B, and C (pp. 2057–2066). ASME. https://doi.org/10.1115/GT2008-51477
  • Zhao, W. (2013). The numerical simulation of the flow noise in the centrifugal pump and noise optimization (Master dissertation). Huazhong University of Science and Technology. http://doi.org/10.7666/d.D410801
  • Zhong, C., Hu, L., Gong, J., Wu, C., & Zhu, X. (2021). Effects analysis on aerodynamic noise reduction of centrifugal compressor used for gasoline engine. Applied Acoustics, 180(2), 108104. https://doi.org/10.1016/j.apacoust.2021.108104