1,033
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the high-speed jet in a liquid-ring pump ejector using a proper orthogonal decomposition method

, , &
Pages 1382-1394 | Received 30 Mar 2022, Accepted 09 Jun 2022, Published online: 06 Jul 2022

References

  • Abadía-Heredia, R., López-Martín, M., Carro, B., Arribas, J. I., Pérez, J. M., & Le Clainche, S. (2022). A predictive hybrid reduced order model based on proper orthogonal decomposition combined with deep learning architectures. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2021.115910
  • Abbaszadeh, M., Dehghan, M., Khodadadian, A., & Heitzinger, C. (2020). Analysis and application of the interpolating element free Galerkin (IEFG) method to simulate the prevention of groundwater contamination with application in fluid flow. Journal of Computational and Applied Mathematics, 368, 112453. https://doi.org/10.1016/j.cam.2019.112453
  • Abbaszadeh, M., Dehghan, M., Khodadadian, A., Noii, N., Heitzinger, C., & Wick, T. (2021). A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier–Stokes equations coupled with a heat transfer equation: Nonstationary incompressible Boussinesq equations. Journal of Computational Physics, 426, 109875. https://doi.org/10.1016/j.jcp.2020.109875
  • Alomar, A., Nicole, A., Sipp, D., Rialland, V., & Vuillot, F. (2020). Reduced-order model of a reacting, turbulent supersonic jet based on proper orthogonal decomposition. Theoretical and Computational Fluid Dynamics, (5). https://doi.org/10.1007/s00162-019-00513-y
  • Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. (2005). Numerical and experimental investigations on supersonic ejectors. International Journal of Heat and Fluid Flow, 26(1), 56–70. https://doi.org/10.1016/j.ijheatfluidflow.2004.07.003
  • Chen, J., Yi, S., Li, X., Han, G., & Yuan, X. (2021). Theoretical, numerical and experimental study of hypersonic boundary layer transition: Blunt circular cone. Applied Thermal Engineering, 194(2), 116931. https://doi.org/10.1016/j.applthermaleng.2021.116931
  • Chunnanond, K., & Aphornratana, S. (2004).Ejectors: Applications in refrigeration technology. Renewable and Sustainable Energy Reviews, 8(2), 129–155. https://doi.org/10.1016/j.rser.2003.10.001
  • Dehghan, M., & Abbaszadeh, M. (2016). Proper orthogonal decomposition variational multiscale element free galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation. Computer Methods in Applied Mechanics and Engineering, 311(Nov.1), 856–888. https://doi.org/10.1016/j.cma.2016.09.008
  • Dehghan, M., Abbaszadeh, M., Khodadadian, A., & Heitzinger, C. (2019). Galerkin proper orthogonal decomposition-reduced order method (POD-ROM) for solving generalized Swift-Hohenberg equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2019. ahead-of-print. doi.org/10.1108/HFF-11-2018-0647
  • Dvorak, V., & Safarik, P. (2005). Transonic instability in entrance part of mixing chamber of high-speed ejector. Journal of Thermal Science, 14(3), 258–264. https://doi.org/10.1007/s11630-005-0011-5
  • Gaitonde, D. V. (2015). Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 72, 80–99. https://doi.org/10.1016/j.paerosci.2014.09.002
  • Granados-Ortiz, F. J., Leon-Prieto, L., & Ortega-Casanova, J. (2021). Computational study of the application of Al2O3 nanoparticles to forced convection of high-reynolds swirling jets for engineering cooling processes. Engineering Applications of Computational Fluid Mechanics, 15(1), 1–22. https://doi.org/10.1080/19942060.2020.1845805
  • Guo, G. Q., Zhang, R. H., Chen, X. B., & Jiang, L. J. (2021). Analysis of transient gas-liquid two-phase flow in liquid ring pump based on POD modal decomposition. Journal of Engineering Thermophysics, 42(2), 349–356.
  • Hassan, M. E. (2020). Numerical investigation of the flow dynamics inside supersonic fluid ejector. Arabian Journal for Science and Engineering, 45(2), 909–919. https://doi.org/10.1007/s13369-019-04179-w
  • Holemans, T., Yang, Z., & Vanierschot, M. (2022). Efficient reduced order modeling of large data sets obtained from CFD simulations. Fluids, 7(3), 110. https://doi.org/10.3390/fluids7030110
  • Huang, R., Li, Z., & Yang, J. (2019). Engineering prediction of fluctuating pressure over incident shock/turbulent boundary-layer interactions. AIAA Journal, 1–5. doi:10.2514/1.J057903
  • Ikui, T., Matsuo, K., Nagai, M., & Honjo, M. (1974). Oscillation phenomena of pseudo-shock waves. Bulletin of JSME, 17(112), 1278–1285. https://doi.org/10.1299/jsme1958.17.1278
  • Jahanbakhshi, R., & Madnia, C. K. (2016). Entrainment in a compressible turbulent shear layer. Journal of Fluid Mechanics, 797, 564–603. https://doi.org/10.1017/jfm.2016.296
  • Jeyakumar, S., Kandasamy, J., Karaca, M., Karthik, K., & Sivakumar, R. (2021). Effect of hydrogen jets in supersonic mixing using strut injection schemes. International Journal of Hydrogen Energy, 46(44), 23013–23025. https://doi.org/10.1016/j.ijhydene.2021.04.123
  • Jiang, L. J., Zhang, R. H., & Chen, X. B. (2021) Internal flow field in ejector of liquid ring pump and its matching characteristic with liquid-ring pump. Journal of Huazhong University of Science and Technology (Natural Science Edition), 49(4), 8–13. https://doi.org/10.13245/j.hust.210402
  • Lario, A., Maulik, R., Schmidt, O. T., Rozza, G., & Mengaldo, G. (2021). Neural-network learning of SPOD latent dynamics. arXiv Preprint ArXiv, 2110, 09218. https://doi.org/10.48550/arXiv.2110.09218
  • Li, X., Yang, Q., Chen, J., Huang, Z., & Tu, G. (2021). Effect of three-dimensional smooth humps on hypersonic boundary layer instability of streamwise vortices over a yawed cone. Physics of Fluids, 33(6), 064109. https://doi.org/10.1063/5.0054396
  • Li, Y., & Deng, J. (2022). Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model. Energy, 238, 121995. https://doi.org/10.1016/j.energy.2021.121995
  • Li, Y. Q., Shen, S. Q., & Zhang, M. C. (2021). Near-wall treaments of non-equilibrium condensing RSM model of a supersonic steam ejector. Journal of Engineering the Rmophysics, 9, 2321–2325.
  • Liang, Y., Zhai, Z. G., & Luo, X. S. (2018). Interaction of strong converging shock wave with SF6 gas bubble. Science China Physics, Mechanics & Astronomy, 61(6), 79–87. https://doi.org/10.1007/s11433-017-9151-6
  • Liu, J., & Yang, Z. (2016). Numerical study on transonic shock oscillation suppression and buffet load alleviation for a supercritical airfoil using a microtab. Engineering Applications of Computational Fluid Mechanics, 10(1), 529–544. https://doi.org/10.1080/19942060.2016.1210029
  • Liu, Q. L., & Lai, H. X. (2021). Comparison of five sub-grid-scale models based on prediction of coherent structures in plane turbulent jets. Chinese Journal of Theoretical and Applied Mechanics, 53(7), 1842–1855.
  • Lopez-Martin, M., Sanchez-Esguevillas, A., Hernandez-Callejo, L., Arribas, J. I., & Carro, B. (2021). Novel data-driven models applied to short-term electric load forecasting. Applied Sciences, 11(12), 5708. https://doi.org/10.3390/app11125708
  • Mengaldo, G., & Maulik, R. (2021). Pyspod: A python package for spectral proper orthogonal decomposition (SPOD). Journal of Open Source Software, 6(60), 2862. https://doi.org/10.21105/joss.02862
  • Mitchell, D. M., Honnery, D. R., & Soria, J. (2012). The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. Journal of Visualization, 15(4), 333–341. https://doi.org/10.1007/s12650-012-0139-9
  • Moreno, D., Krothapalli, A., Alkislar, M. B., & Lourenco, L. M. (2004). Low-dimensional model of a supersonic rectangular jet. Physical Review E, 69(2), 026304. https://doi.org/10.1103/PhysRevE.69.026304
  • Nogueira, P. A., Cavalieri, A. V., Jordan, P., & Jaunet, V. (2019). Large-scale streaky structures in turbulent jets. Journal of Fluid Mechanics, 873, 211–237. https://doi.org/10.1017/jfm.2019.365
  • Omidvar, A., Ghazikhani, M., & Razavi, S. (2016). Entropy analysis of a solar-driven variable geometry ejector using computational fluid dynamics. Energy Conversion and Management, 119, 435–443. https://doi.org/10.1016/j.enconman.2016.03.090
  • Parvizi, M., Khodadadian, A., & Eslahchi, M. R. (2020). Analysis of ciarlet–raviart mixed finite element methods for solving damped Boussinesq equation. Journal of Computational and Applied Mathematics, 379, 112818. https://doi.org/10.1016/j.cam.2020.112818
  • Phan, L. Q., Johnstone, A. D., Kosasih, B., & Renshaw, W. (2022). Patterns and reduced-order reconstruction of impinging wiping Jet pressure profile fluctuation using proper orthogonal decomposition. Journal of Fluids Engineering, 144(2), 021502. https://doi.org/10.1115/1.4051811
  • Rana, Z. A., Thornber, B., & Drikakis, D. (2013). Dynamics of sonic Hydrogen Jet injection and mixing inside scramjet combustor. Engineering Applications of Computational Fluid Mechanics, 7(1), 13–39. https://doi.org/10.1080/19942060.2013.11015451
  • Roth, J. (2021). Proper orthogonal decomposition for fluid mechanics problems. Leibniz Universitat Hannover.
  • Schmidt, O. T., & Colonius, T. (2020). Guide to spectral proper orthogonal decomposition. AIAA Journal, 58(3), 1023–1033. https://doi.org/10.2514/1.J058809
  • Shinneeb, A. M., Balachandar, R., & Bugg, J. D. (2008). Analysis of coherent structures in the far-field region of an axisymmetric free jet identified using particle image velocimetry and proper orthogonal decomposition. Journal of Fluids Engineering, 130(1), 151–163. https://doi.org/10.1115/1.2813137
  • Sieber, M., Paschereit, C. O., & Oberleithner, K. (2016). Spectral proper orthogonal decomposition. Journal of Fluid Mechanics, 792, 798–828. https://doi.org/10.1017/jfm.2016.103
  • Strušnik, D., & Avsec, J. (2022). Exergoeconomic machine-learning method of integrating a thermochemical Cu–Cl cycle in a multigeneration combined cycle gas turbine for hydrogen production. International Journal of Hydrogen Energy, 47(39), 17121–17149. https://doi.org/10.1016/j.ijhydene.2022.03.230
  • Sun, F., Su, W. Y., Hou, Q., & Wang, M. Y. (2021). Modal decomposition and rapid prediction of shock train oscillation for inlet. Journal of Aerospace Power, (5), 1040–1051. doi:10.13224/j.cnki.jasp.2021.05.015
  • Suvarnakuta, N., Pianthong, K., Sriveerakul, T., & Seehanam, W. (2020). Performance analysis of a two-stage ejector in an ejector refrigeration system using computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 14(1), 669–682. https://doi.org/10.1080/19942060.2020.1756913
  • Towne, A., Schmidt, O. T., & Colonius, T. (2018). Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 847, 821–867. https://doi.org/10.1017/jfm.2018.283
  • Vanierschot, M., Müller, J. S., Sieber, M., Percin, M., van Oudheusden, B. W., & Oberleithner, K. (2020). Single- and double-helix vortex breakdown as two dominant global modes in turbulent swirling jet flow. Journal of Fluid Mechanics, 883. https://doi.org/10.1017/jfm.2019.872
  • Wang, C. P., & Zhang, K. Y. (2010). Shock train oscillation and wall pressure fluctuation in internal flow. Journal of Experiments in Fluid Mechanics, 24(5), 57–62.https://doi.org/10.3969/j.issn.1672-9897.2010.05.012
  • Wang, H., Zhai, Z., Luo, X., Yang, J., & Lu, X. (2017). A specially curved wedge for eliminating wedge angle effect in unsteady shock reflection. Physics of Fluids, 29(8), 086103. https://doi.org/10.1063/1.4999349
  • Wang, X., Chen, Y., Li, M., Xu, Y., & Dang, X. (2020). Numerical investigation of the cavitation performance of annular jet pumps with different profiles of suction chamber and throat inlet. Engineering Applications of Computational Fluid Mechanics, 14(1), 1416–1428. https://doi.org/10.1080/19942060.2020.1824875
  • Wang, X., Li, H., Ning, J., Zhang, P., Huang, H., & Tu, J. (2021). Numerical investigation of the nozzle expansion state and its effect on the performance of the steam ejector based on ideal gas model. Applied Thermal Engineering, 199, 117509.https://doi.org/10.1016/j.applthermaleng.2021.117509
  • Xiao, S., Ge, Z., Ren, Q., Liu, J., & Wang, H. (2020). Numerical analysis on the flow field structure and deflection characteristics of water jets under nozzle moving conditions. Engineering Applications of Computational Fluid Mechanics, 14(1), 1279–1301. https://doi.org/10.1080/19942060.2020.1822210
  • Ye, Z. X., Fang Y. Q., Zou, J. F., Wang, G. F., Shi, Y., & Zheng, Y. (2021). Synthetic jet actuator PIV experiments and modal analysis. Journal of Propulsion Technology, (2), 258–271. doi:10.13675/j.cnki.tjjs.190681
  • Zhang, C., Yu, W., & Wang, B. S. (2021). Flow field characteristics of underwater supersonic over-expanded gas jet. Journal of Aerospace Power, 1–11. https://doi.org/10.13224/j.cnki.jasp.20210370
  • Zhang, Q. S. (2015) PIV measurements of unsteady characteristics of separated and reattaching flow on finite blunt plate. (Doctoral dissertation, Shanghai Jiao Tong University). https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2017&filename=1016787672.nh
  • Zhang, R., Chen, X., & Luo, J. (2021). Knowledge mining of low specific speed centrifugal pump impeller based on proper orthogonal decomposition method. Journal of Thermal Science, 30(3), 9. https://doi.org/10.1007/s11630-020-1356-5
  • Zhang, R. C., Bai, N. J., Fan, W. J., Huang, X. Y., & Fan, X. Q. (2019). Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity. Energy, 189, 116216. https://doi.org/10.1016/j.energy.2019.116216
  • Zhang, R. H., Chen, X. B., Guo, G. Q., & Li, R. N. (2018). Reconstruction and modal analysis for flow field of Low specific speed centrifugal pump impeller. Transactions of the Chinese Society for Agricultural Machinery, 49(12), 143–149. https://doi.org/10.6041/j.issn.1000-1298.2018.12.018