542
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of multihole baffle-induced lobe flow structures on a high efficiency micro-thermophotovoltaic system

&
Pages 2074-2099 | Received 22 Jul 2022, Accepted 26 Sep 2022, Published online: 15 Oct 2022

References

  • Akhtar, S., Kurnia, J. C., & Shamim, T. (2019). A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application. Applied Energy, 152, 47–57. https://doi.org/10.1016/j.apenergy.2015.04.068
  • ANSYS 13.0 user's guide. (2006). Fluent Inc.
  • Bagheri, G., Hosseini, S. E., & Wahid, M. A. (2014). Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture. Applied Thermal Engineering, 67(1–2), 266–272. https://doi.org/10.1016/j.applthermaleng.2014.03.040
  • Cai, J., Tsai, H. M., & Liu, F. (2010). Numerical simulation of vortical flows in the near field of jets from notched circular nozzles. Computers and Fluids, 39(3), 539–552. https://doi.org/10.1016/j.compfluid.2009.10.006
  • Choi, H. S., & Park, T. S. (2009). A numerical study for heat transfer characteristics of a micro combustor by large eddy simulation. Numerical Heat Transfer, Part A: Applications, 56(3), 230–245. https://doi.org/10.1080/10407780903163470
  • Choi, H. S., Park, T. S., & Suzuki, K. (2008). Turbulent mixing of a passive scalar in confined multiple jet flows of a micro combustor. International Journal of Heat and Mass Transfer, 51(17–18), 4276–4286. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.017
  • Chou, S. K., Yang, W. M., Chua, K. J., Li, J., & Zhang, K. L. (2011). Development of micro power generators – a review. Applied Energy, 88(1), 1–16. https://doi.org/10.1016/j.apenergy.2010.07.010
  • Espinoza-Jara, A., Walczak, M., Molina, N., Jahn, W., & Brevis, W. (2022). Erosion under turbulent flow: A CFD-based simulation of near-wall turbulent impacts with experimental validation. Engineering Applications of Computational Fluid Mechanics, 16(1), 1526–1545. https://doi.org/10.1080/19942060.2022.2099978
  • Fan, A., Wan, J., Maruta, K., Yao, H., & Liu, W. (2013). Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body. International Journal of Heat and Mass Transfer, 66, 72–79. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.024
  • Fernandez-pello, A. C. (2002). Micropower generation using combustion: Issues and application. Proceedings of the Combustion Institute, 29(1), 883–899. https://doi.org/10.1016/S1540-7489(02)80113-4
  • Giovangigli, V., & Smooke, M. D. (1987). Extinction of strained premixed laminar flames with complex chemistry. Combustion Science and Technology, 53(1), 23–49. https://doi.org/10.1080/00102208708947017
  • Hu, H., Saga, T., Kobayashi, T., & Taniguchi, N. (2000). Research on the vortical and turbulent structure in the lobed jet flow using fluorescence and particle image volocimetry techniques. Measurement of Science Technology, 11(6), 698–711. https://doi.org/10.1088/0957-0233/11/6/313
  • Hu, H., Saga, T., Kobayashi, T., & Taniguchi, N. (2001). A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique. Physics of Fluids, 13(11), 3425–3441. https://doi.org/10.1063/1.1409537
  • Hu, H., Saga, T., Kobayashi, T., & Taniguchi, N. (2002). Mixing process in a lobed jet flow. AIAA Journal, 40(7), 1339–1345. https://doi.org/10.2514/2.1793
  • Jones, W. P., & Lindstedt, R. P. (1988). Global reaction schemes for hydrocarbon combustion. Combustion and Flame, 73(3), 233–249. https://doi.org/10.1016/0010-2180(88)90021-1
  • Khalil, H. M., Eldrainy, Y. A., Abdelghaffar, W. A., & Abdel-Rahman, A. A. (2019). Increased heat transfer to sustain flameless combustion under elevated pressure conditions – a numerical study. Engineering Applications of Computational Fluid Mechanics, 13(1), 782–803. https://doi.org/10.1080/19942060.2019.1645737
  • Kim, W. H., & Park, T. S. (2018). Non-premixed lean flame characteristics depending on air hole positions in a baffled micro combustor. Applied Thermal Engineering, 129, 431–445. https://doi.org/10.1016/j.applthermaleng.2017.10.064
  • Kim, W. H., & Park, T. S. (2019). Flame characteristics depending on recirculating flows in a non-premixed micro combustor with varying baffles. Applied Thermal Engineering, 148, 591–608. https://doi.org/10.1016/j.applthermaleng.2018.11.075
  • Kim, W. H., & Park, T. S. (2020). Influence of inlet vorticity and aspect ratio on axis switching and mixing characteristics of heated rectangular jets. International Journal of Heat and Mass Transfer, 155, Article 119813. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119813
  • Kim, W. H., & Park, T. S. (2021). Inflow characteristics for generating axis-switching phenomenon of heated rectangular jets. Computers and Mathematics with Applications, 86, 73–89. https://doi.org/10.1016/j.camwa.2021.02.001
  • Kim, W. H., & Park, T. S. (2022). Effects of number of air holes on flame and heat transfer characteristics in a multihole baffled combustor combined with micro-thermophotovoltaic and micro-thermoelectric systemsmicro can combustor with a seven-hole baffle. Applied Thermal Engineering, 208, Article 118180. https://doi.org/10.1016/j.applthermaleng.2022.118180
  • Kuo, C. H., & Ronney, O. D. (2007). Numerical modeling of non-adiabatic heat-recirculating combustors. Proceedings of the Combustion Institute, 31(2), 3277–3284. https://doi.org/10.1016/j.proci.2006.08.082
  • Mi, J., & Nathan, G. J. (2010). Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles. Flow, Turbulence and Combustion, 84(4), 583–606. https://doi.org/10.1007/s10494-009-9240-0
  • Paul, R. V., Kriparaj, K. G., & Tide, P. S. (2020). Numerical predictions of the flow characteristics of subsonic jet emanating from corrugated lobed nozzle. Aircraft Engineering and Aerospace Technology, 92(7), 955–972. https://doi.org/10.1108/AEAT-03-2019-0041
  • Sheng, Z., Huang, P., Zhao, T., & Ji, J. (2015). Configurations of lobed nozzles for high mixing effectiveness. International Journal of Heat and Mass Transfer, 91, 671–683. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.022
  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V. V., & Qin, Z. (1999). GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech
  • Smith, L. L., Majamaki, A. J., Lam, I. T., Delabroy, O., Karagozian, A. R., & Marble, F. E. (1997). Mixing enhancement in a lobed injector. Physics of Fluids, 9(3), 667–678. https://doi.org/10.1063/1.869224
  • Sui, C., Zhang, J., Zhang, L., Hu, X., & Zhang, B. (2021). Large eddy simulation of premixed hydrogen-rich gas turbine combustion based on reduced reaction mechanisms. Engineering Applications of Computational Fluid Mechanics, 15(1), 798–814. https://doi.org/10.1080/19942060.2021.1918581
  • Veríssimo, A. S., Rocha, A. M. A., Coelho, P. J., & Costa, M. (2015). Experimental and numerical investigation of the influence of the air preheating temperature on the performance of a small-scale mild combustor. Combustion Science and Technology, 187(11), 1724–1741. https://doi.org/10.1080/00102202.2015.1059330
  • Waitz, I. A., Gauba, G., & Yang, S. T. (1998). Combustors for micro-gas turbine engines. Journal of Fluids Engineering, 120(1), 109–117. https://doi.org/10.1115/1.2819633
  • Wan, J. A., Fan, W., Liu, Y., Yao, H., Liu, W., Gou, X., & Zhao, D. (2015). Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities. Combustion and Flame, 162(4), 1035–1045. https://doi.org/10.1016/j.combustflame.2014.09.024
  • Westbrook, C. K., & Dryer, F. L. (1981). Simplified reaction mechanism for oxidation of hydrocarbon. Combustion Science and Technology, 27(1–2), 31–43. https://doi.org/10.1080/00102208108946970
  • Yang, B., & Pope, S. B. (1998). An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combustion and Flame, 112(1–2), 16–32. https://doi.org/10.1016/S0010-2180(97)81754-3
  • Yang, W. M., Chua, K. J., Pan, J. F., Jiang, D. Y., & An, H. (2014). Development of micro-thermophotovoltaic power generator with heat recuperation. Energy Conversion and Management, 78, 81–87. https://doi.org/10.1016/j.enconman.2013.10.040
  • Zhang, L., Zhu, J., Yan, Y., Guo, H., & Yang, Z. (2015). Numerical investigation on the combustion characteristics of methane/air in a micro-combustor with a hollow hemispherical bluff body. Energy Conversion and Management, 94, 293–299. https://doi.org/10.1016/j.enconman.2015.01.014