506
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Resonance risk assessment method on a storage pump’s centrifugal impeller by considering the hydrodynamic damping ratio

, , , , &
Pages 2176-2190 | Received 07 Sep 2022, Accepted 30 Oct 2022, Published online: 11 Nov 2022

References

  • ANSYS Inc. (2012). ANSYS user manual 14.5.
  • Bergan, C. W., Tengs, E. O., Solemslie, B. W., & Dahlhaug, O. G. (2018). Damping measurements on a multi-blade cascade with multiple degrees of freedom: A francis-99 test case. Journal of Physics Conference Series, 1296(1), 012003. https://doi.org/10.1088/1742-6596/1296/1/012003
  • Bermúdez, M., Cea, L., Puertas, J., Conde, A., Martín, A., & Baztán, J. (2017). Hydraulic model study of the intake-outlet of a pumped-storage hydropower plant. Engineering Applications of Computational Fluid Mechanics, 11(1), 483–495. https://doi.org/10.1080/19942060.2017.1314869
  • Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), 078001. https://doi.org/10.1115/1.2960953
  • Chen, J. F., Shi, W. D., & Zhang, D. S. (2021). Influence of blade inlet angle on the performance of a single blade centrifugal pump. Engineering Applications of Computational Fluid Mechanics, 15(1), 462–475. https://doi.org/10.1080/19942060.2020.1868341
  • Crandall, S. H. (1970). The role of damping in vibration theory. Journal of Sound and Vibration, 11(1), 3–18. https://doi.org/10.1016/S0022-460X(70)80105-5
  • Egusquiza, E., Valero, C., Liang, Q., Coussirat, M., & Seidel, U. (2009). Fluid added mass effect in the modal response of a pump-turbine impeller. ASME 2009 international design engineering technical conferences and computers and information in engineering conference, San Diego, CA, 715-724.
  • Gauthier, J. P., Giroux, A. M., Etienne, S., & Gosselin, F. P. (2017). A numerical method for the determination of flow-induced damping in hydroelectric turbines. Journal of Fluids and Structures, 69, 341–354. https://doi.org/10.1016/j.jfluidstructs.2017.01.004
  • He, L. Y. (2018). Dynamic Behavior Analysis and Resonance Prediction of Pump-turbine Runner. [Doctoral dissertation, Ph. D. thesis]. China Agricultural University, Beijing, People’s Republic of China.
  • He, L. Y., Wang, Z. W., Kurosawa, S., & Nakahara, Y. (2014). Resonance investigation of pump-turbine during startup process. IOP Conference Series: Earth and Environmental Science, 22(3), 032024. https://doi.org/10.1088/1755-1315/22/3/032024
  • IEC Standards 60193. (1999). Hydraulic turbines, storage pumps and pump-turbines-model acceptance tests (2 edition). International Commission.
  • Kohtanen, E., & Davis, R. B. (2019). Hydroelastic damping of low aspect ratio cantilevered plates. Journal of Fluids and Structures, 90, 315–333. https://doi.org/10.1016/j.jfluidstructs.2019.06.015
  • Kong, Y., Kong, Z., Liu, Z., Wei, C., Zhang, J., & An, G. (2017). Pumped storage power stations in China: The past, the present, and the future. Renewable and Sustainable Energy Reviews, 71, 720–731. https://doi.org/10.1016/j.rser.2016.12.100
  • Liaghat, T., Guibault, F., Allenbach, L., & Nennemann, B. (2014). Two-Way fluid-structure coupling in vibration and damping analysis of an oscillating hydrofoil. Proceedings of the ASME 2014 international mechanical engineering congress and exposition, Quebec, Canada, November 14-20.
  • Liang, Q. W., Lais, S., Gentner, C., & Braun, O. (2012). Efficient runner safety assessment during early design phase and root cause analysis. IOP Conference Series: Earth and Environmental Science, 15(5), 052009. https://doi.org/10.1088/1755-1315/15/5/052009
  • Liang, Q. W., Rodr ıguez, C. G., Egusquiza, E., Escaler, X., Farhat, M., & Avellan, F. (2007). Numerical simulation of fluid added mass effect on a francis turbine runner. Computers & Fluids, 36(6), 1106–1118. https://doi.org/10.1016/j.compfluid.2006.08.007
  • Liu, M., & Gorman, D. G. (1995). Formulation of Rayleigh damping and its extensions. Computers & Structures, 57(2), 277–285. https://doi.org/10.1016/0045-7949(94)00611-6
  • Liu, X., Luo, Y. Y., & Wang, Z. W. (2016). A review on fatigue damage mechanism in hydro turbines. Renewable and Sustainable Energy Reviews, 54, 1–14. https://doi.org/10.1016/j.rser.2015.09.025
  • REN21. (2021). Renewables 2021 global status report. REN21 Secretariat.
  • Roth, S., Calmon, M., Farhat, M., Muench, C., Huebner, B., & Avellan, F. (2009). Hydrodynamic damping identification from an impulse response of a vibration blade. 3rd IAHR international meeting of the workgroup on cavitation and dynamic problems in hydraulic machinery and systems, Brno, Czech Republic, October 14-16.
  • Schmidt, J., Kemmetmüller, W., & Kugi, A. (2017). Modeling and static optimization of a variable speed pumped storage power plant. Renewable Energy, 111, 38–51. https://doi.org/10.1016/j.renene.2017.03.055
  • Seeley, C., Coutu, A., Monette, C., Nennemann, B., & Marmont, H. (2012). Characterization of hydrofoil damping due to fluid-structure interaction using piezocomposite actuators. Smart Materials and Structures, 21(3), 35027–35035. https://doi.org/10.1088/0964-1726/21/3/035027
  • Smirnov, P., & Menter, F. (2009). Sensitization of the SST turbulence model to rotation and curvature by applying the spalart-shur correction term. Journal of Turbomachinery, 131(4), 041010. https://doi.org/10.1115/1.3070573
  • Tanaka, H. (2011). Vibration behavior and dynamic stress of runners of very high head reversible pump-turbines. International Journal of Fluid Machinery and Systems, 4(2), 289–306. https://doi.org/10.5293/IJFMS.2011.4.2.289
  • Tao, R., Xiao, R., & Wang, Z. (2018). Influence of blade leading-edge shape on cavitation in a centrifugal pump impeller. Energies, 11(10), 2588. https://doi.org/10.3390/en11102588
  • Tengs, E. O. (2019a). Numerical simulation of Fluid-Structure Interaction in high head Francis turbine [Doctoral dissertation, Ph. D. thesis]. Norwegian University of Science and Technology, Trondheim, Norwegian.
  • Tengs, E. O., Charrassier, F., Storli, P. T. S., & Holst, M. (2019b). Model order reduction technique applied on harmonic analysis of a submerged vibrating blade. International Journal of Applied Mechanics and Engineering, 24(1), 131–142. https://doi.org/10.2478/ijame-2019-0009
  • Trivedi, C. (2017). A review on fluid structure interaction in hydraulic turbines: A focus on hydrodynamic damping. Engineering Failure Analysis, 77, 1–22. https://doi.org/10.1016/j.engfailanal.2017.02.021
  • Wang, C., Zeng, Y., Yao, Z., & Wang, F. (2021). Rigid vorticity transport equation and its application to vortical structure evolution analysis in hydro-energy machinery. Engineering Applications of Computational Fluid Mechanics, 15(1), 1016–1033. https://doi.org/10.1080/19942060.2021.1938685
  • Yao, Z. F., Wang, F. J., Dreyer, M., & Farhat, M. (2014). Effect of trailing edge shape on hydrodynamic damping for a hydrofoil. Journal of Fluids and Structures, 51, 189–198. https://doi.org/10.1016/j.jfluidstructs.2014.09.003
  • Zeng, Y. S., Yao, Z. F., Tao, R., Liu, W. C., & Xiao, X. F. (2021b). Effects of lean mode of blade trailing edge on pressure fluctuation characteristics of a vertical centrifugal pump with vaned diffuser. Journal of Fluids Engineering, 143(11), 111201. https://doi.org/10.1115/1.4051386
  • Zeng, Y. S., Yao, Z. F., Zhang, S. J., Wang, F. J., & Xiao, R. F. (2021a). Influence of Tip clearance on the hydrodynamic damping characteristics of a hydrofoil. Journal of Fluids Engineering, 143(6), 061202. https://doi.org/10.1115/1.4049675
  • Zeng, Y. S., Yao, Z. F., Zhou, P. J., Wang, F. J., & Hong, Y. P. (2019). Numerical investigation into the effect of the trailing edge shape on added mass and hydrodynamic damping for a hydrofoil. Journal of Fluids and Structures, 88, 167–184. https://doi.org/10.1016/j.jfluidstructs.2019.05.006
  • Zhao, H., Wang, F., Wang, C., Chen, W., Yao, Z., Shi, X., Li, X., & Zhong, Q. (2021). Study on the characteristics of horn-like vortices in an axial flow pump impeller under off-design conditions. Engineering Applications of Computational Fluid Mechanics, 15(1), 1613–1628. https://doi.org/10.1080/19942060.2021.1985615
  • Zhao, J. T., Pei, J., Yuan, J. P., & Wang, W. J. (2022). Energy-saving oriented optimization design of the impeller and volute of a multi-stage double-suction centrifugal pump using artificial neural network. Engineering Applications of Computational Fluid Mechanics, 16(1), 1974–2001. https://doi.org/10.1080/19942060.2022.2127913