430
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dual-objective optimization strategy of self-adaptive transient pressure controller in water delivery engineering

, , , , , , & show all
Article: 2327446 | Received 18 Jan 2024, Accepted 02 Mar 2024, Published online: 14 Mar 2024

References

  • Bazargan-Lari, M. R., Kerachian, R., Afshar, H., & Bashi-Azghadi, S. N. (2013). Developing an optimal valve closing rule curve for real-time pressure control in pipes. Journal of Mechanical Science and Technology, 27(1), 215–225. https://doi.org/10.1007/s12206-012-1208-7
  • Bergant, A., Ross Simpson, A., & Vìtkovsk, J. (2001). Developments in unsteady pipe flow friction modelling. Journal of Hydraulic Research, 39(3), 249–257. https://doi.org/10.1080/00221680109499828
  • Bettaieb, N., & Taieb, E. H. (2020). Assessment of failure modes caused by water hammer and investigation of convenient control measures. Journal of Pipeline Systems Engineering and Practice, 11(2), 04020006. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000446
  • Bostan, M., Akhtari, A. A., Bonakdari, H., & Jalili, F. (2019). Optimal design for shock damper with genetic algorithm to control water hammer effects in complex water distribution systems. Water Resources Management, 33(5), 1665–1681. https://doi.org/10.1007/s11269-019-2192-9
  • Cao, H., Mohareb, M., & Nistor, I. (2020). Finite element for the dynamic analysis of pipes subjected to water hammer. Journal of Fluids and Structures, 93, 102845. https://doi.org/10.1016/j.jfluidstructs.2019.102845
  • Davies, W., Wolf, M., Barry, M., O’Hern, S., & Morse, T. (2021). The effect of valve closure time on water hammer. In ASME international mechanical engineering congress and exposition (Vol. 85666, pp. V010T10A026). American Society of Mechanical Engineers.
  • Du, X.-x., Lambert, M. F., Chen, L., Jing Hu, E., & Xi, W. (2020). Pipe burst detection, localization, and quantification using the transient pressure damping method. Journal of Hydraulic Engineering, 146(11), 04020077. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001810
  • Elgammi, M., & Hamad, A. A. (2022). A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon. Renewable Energy, 195, 1–16. https://doi.org/10.1016/j.renene.2022.05.131
  • Fathi-Moghadam, M., Haghighipour, S., & Vali Samani, H. M. (2013). Design-variable optimization of hydropower tunnels and surge tanks using a genetic algorithm. Journal of Water Resources Planning and Management, 139(2), 200–208. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000243
  • Hoeller, S., & Jaberg, H. (2013). A contribution to water hammer analysis in pumped-storage power plants. WasserWirtschaft-Hydrologie, Wasserbau, Hydromechanik, Gewässer, Ökologie, Boden, 103(1/2), 78–84.
  • Karney, B. W., & Simpson, A. R. (2007). In-line check valves for water hammer control. Journal of Hydraulic Research, 45(4), 547–554. https://doi.org/10.1080/00221686.2007.9521790
  • Karpenko, M., & Bogdevičius, M. (2020). Investigation of hydrodynamic processes in the system – “pipeline-fittings”. In TRANSBALTICA XI: Transportation science and technology: Proceedings of the international conference TRANSBALTICA, May 2-3, 2019, Vilnius, Lithuania (pp. 331–340). Springer International Publishing.
  • Kim, H., Kim, S., Kim, Y., & Kim, J. (2018). Optimization of operation parameters for direct spring loaded pressure relief valve in a pipeline system. Journal of Pressure Vessel Technology, 140(5), 051603. https://doi.org/10.1115/1.4040361
  • Kim, S.-H. (2010). Design of surge tank for water supply systems using the impulse response method with the GA algorithm. Journal of Mechanical Science and Technology, 24(2), 629–636. https://doi.org/10.1007/s12206-010-0108-y
  • Liu, J., Zhang, J., Chen, S., & Yu, X. (2017). Investigation on maximum upsurge and air pressure of air cushion surge chamber in hydropower stations. Journal of Pressure Vessel Technology, 139(3), 031603. https://doi.org/10.1115/1.4035790
  • Lizarraga-Raygoza, A., Delgado-Aguiñaga, J., & Begovich, O. (2018). Steady state algorithm for leak diagnosis in water pipeline systems. IFAC-PapersOnLine, 51(13), 402–407. https://doi.org/10.1016/j.ifacol.2018.07.312
  • Pezzinga, G. (2000). Evaluation of unsteady flow resistances by quasi-2D or 1D models. Journal of Hydraulic Engineering, 126(10), 778–785. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(778)
  • Stephenson, D. (2002). Simple guide for design of air vessels for water hammer protection of pumping lines. Journal of Hydraulic Engineering, 128(8), 792–797. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:8(792)
  • Tian, W., Su, G. H., Wang, G., Qiu, S., & Xiao, Z. (2008). Numerical simulation and optimization on valve-induced water hammer characteristics for parallel pump feedwater system. Annals of Nuclear Energy, 35(12), 2280–2287. https://doi.org/10.1016/j.anucene.2008.08.012
  • Triki, A., & Chaker, M. A. (2019). Compound technique-based inline design strategy for water-hammer control in steel pressurized-piping systems. International Journal of Pressure Vessels and Piping, 169, 188–203. https://doi.org/10.1016/j.ijpvp.2018.12.001
  • Triki, A., & Essaidi, B. (2022). Investigation of pump failure-induced waterhammer waves: A case study. Journal of Pressure Vessel Technology, 144(2), 021403. https://doi.org/10.1115/1.4051512
  • Wan, W., & Huang, W. (2018). Water hammer simulation of a series pipe system using the MacCormack time marching scheme. Acta Mechanica, 229(7), 3143–3160. https://doi.org/10.1007/s00707-018-2179-2
  • Wan, W., & Li, F. (2016). Sensitivity analysis of operational time differences for a pump–valve system on a water hammer response. Journal of Pressure Vessel Technology, 138(1), 011303. https://doi.org/10.1115/1.4031202
  • Wan, W., & Zhang, B. (2018). Investigation of water hammer protection in water supply pipeline systems using an intelligent self-controlled surge tank. Energies, 11(6), 1450. https://doi.org/10.3390/en11061450
  • Wan, W., & Zhang, B. (2020). The intermittent leakage phenomenon of incipient cracks under transient conditions in pipeline systems†. International Journal of Pressure Vessels and Piping, 186, 104138. https://doi.org/10.1016/j.ijpvp.2020.104138
  • Wan, W., Zhang, B., Chen, X., & Lian, J. (2019). Water hammer control analysis of an intelligent surge tank with spring self-adaptive auxiliary control system. Energies, 12(13), 2527. https://doi.org/10.3390/en12132527
  • Wylie, E. B., Streeter, V. L., & Suo, L. (1993). Fluid transients in systems (Vol. 1). Prentice Hall.
  • Yazdi, J., Hokmabadi, A., & JaliliGhazizadeh, M. (2019). Optimal size and placement of water hammer protective devices in water conveyance pipelines. Water Resources Management, 33(2), 569–590. https://doi.org/10.1007/s11269-018-2120-4
  • Yu, X., Zhang, J., & Zhou, L. (2014). Hydraulic transients in the long diversion-type hydropower station with a complex differential surge tank. The Scientific World Journal, 2014, Article id 241868. https://doi.org/10.1155/2014/241868
  • Zhang, B., & Wan, W. (2022). A transient-features-based diagnostic method of multi incipient cracks in pipeline systems. International Journal of Pressure Vessels and Piping, 199, 104701. https://doi.org/10.1016/j.ijpvp.2022.104701
  • Zhang, B., Wan, W., & Shi, M. (2018). Experimental and numerical simulation of water hammer in gravitational pipe flow with continuous air entrainment. Water, 10(7), 928. https://doi.org/10.3390/w10070928
  • Zhu, J., Wu, G., Duan, X., Li, X., & Tang, X. (2023). Numerical studies on applications of cavitation models in water hammer-induced cavitating flows in pipelines. Physics of Fluids, 35(9), 095129. https://doi.org/10.1063/5.0158788
  • Zong, C., Li, Q., Li, K., Song, X., Chen, D., Li, X., & Wang, X. (2022). Computational fluid dynamics analysis and extended adaptive hybrid functions model-based design optimization of an explosion-proof safety valve. Engineering Applications of Computational Fluid Mechanics, 16(1), 296–315. https://doi.org/10.1080/19942060.2021.2010602