374
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fluvial bedload transport modelling: advanced ensemble tree-based models or optimized deep learning algorithms?

, , , , , & show all
Article: 2346221 | Received 18 Jan 2024, Accepted 15 Apr 2024, Published online: 10 May 2024

References

  • Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 203, 810–821. https://doi.org/10.1016/j.jclepro.2018.08.207
  • Asheghi, R., & Hosseini, S. A. (2020). Prediction of bed load sediments using different artificial neural network models. Frontiers of Structural and Civil Engineering, 14(2), 374–386. https://doi.org/10.1007/s11709-019-0600-0
  • Azzouni, A., & Pujolle, G. (2017). A long short-term memory recurrent neural network framework for network traffic matrix prediction.
  • Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. US Geol. Surv. Prof. Paper, 422(1), 231–291.
  • Barry, J. J., Buffington, J. M., & King, J. G. (2004). A general power equation for predicting bed load transport rates in gravel bed rivers. Water Resources Research, 40(10), W10401. https://doi.org/10.1029/2004WR003190
  • Barzgaran, M., Mahdizadeh, H., & Sharifi, S. (2019). Numerical simulation of bedload sediment transport with the ability to model wet/dry interfaces using an augmented Riemann solver. Journal of Hydroinformatics, 21(5), 834–850. https://doi.org/10.2166/hydro.2019.046
  • Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(801), 849.
  • Bui, D., Pradhan, B., Nampak, H., Bui, Q-H., Tran, Q-A., Nguyen, Q-P. (2016). Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317–330. https://doi.org/10.1016/j.jhydrol.2016.06.027
  • Cooper, J. R., & Tait, S. J. (2009). Water-worked gravel beds in laboratory flumes - a natural analogue? Earth Surface Processes and Landforms, 34(3), 384–397. https://doi.org/10.1002/esp.1743
  • De’ath, G., & Fabricius, K. E. (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis Ecology (2000) https://doi/abs/10.1890/0012-9658%282000%29081%5B3178%3ACARTAP%5D2.0.CO%3B2.
  • Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows (No. 1026). Department of Agriculture, Washington, D.C.: US.
  • Elhakeem, M., & Imran, J. (2016). Bedload model for nonuniform sediment. Journal of Hydraulic Engineering, 142(6), 06016004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001139
  • Feeney, C. J., Godfrey, S., Cooper, J. R., Plater, A. J., & Dodds, D. (2022). Forecasting riverine erosion hazards to electricity transmission towers under increasing flow magnitudes. Climate Risk Management, 36, 100439. https://doi.org/10.1016/j.crm.2022.100439
  • Fisher, S. G., Gray, L. J., Grimm, N. B., & Busch, D. E. (1982). Temporal succession in a desert stream ecosystem following flash flooding. Ecological Monographs, 52(1), 93–110. https://doi.org/10.2307/2937346
  • Frank, E., Mayo, M., & Kramer, S. (2015). Alternating model trees. In Sac ‘15 Proceedings of the 30th Annual ACM Symposium on Applied Computing (pp. 871–878). ACM New York.
  • Fu, H., Shan, Y., & Liu, C. (2023). A model for predicting the grain size distribution of an armor layer under clear water scouring. Journal of Hydrology, 623, 129842. https://doi.org/10.1016/j.jhydrol.2023.129842
  • Gao, P. (2011). An equation for bed-load transport capacities in gravel-bed rivers. Journal of Hydrology, 402(3–4), 297–305. https://doi.org/10.1016/j.jhydrol.2011.03.025
  • Gao, W., Guirao, J. L. G., Abdel-Aty, M., & Xi, W. (2019). An independent set degree condition for fractional critical deleted graphs. Discret Contin Dyn Syst S, 12(4–5), 877–886.
  • Geurts, P., & Wehenkel, L. (2005, October 3–7). Segment and combine approach for non-parametric time-series classification. Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal (pp. 478–485. LNCS.
  • Ghorbanzadeh, O., Meena, S. R., Blaschke, T., & Aryal, J. (2019). UAV-based slope failure detection using deep-learning convolutional neural networks. Remote Sensing, 11(17), 2046. https://doi.org/10.3390/rs11172046
  • Gomez, B., & Church, M. (1989). An assessment of bed load sediment transport formulae for gravel bed rivers. Water Resources Research, 25(6), 1161–1186.
  • Graf, W. H. (1971). Hydraulics of Sediment Transport. McGraw-Hill.
  • Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on tabular data? http://arxiv.org/abs/2207.08815.
  • Hall, M. A. (1999). Correlation-based feature selection for machine learning, no. April.
  • Hinton, D., Hotchkiss, R., & Cope, M. (2018). Comparison of calibrated empirical and semi-empirical methods for bedload transport rate prediction in gravel bed streams. Journal of Hydraulic Engineering, 144(7), 1–17. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001474.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hosseiny, H., Masteller, C., Dale, J., & Phillips, C. (2023). Development of a machine learning model for river bed load. Earth Surface Dynamics, 11(4), 681–693. https://doi.org/10.5194/esurf-11-681-2023
  • Hussain, D., & Khan, A. A. (2020). Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan. Earth Science Informatics, 13(3), 939–949. https://doi.org/10.1007/s12145-020-00450-z
  • Jilani, A. N., & Hashemi, S. U. (2013). Numerical investigations on bed load sediment transportation using SPH method. Iranian Journal of Science, 20(2), 294–299.
  • Khosravi, K., Cooper, J. R., Daggupati, P., Pham, B., & Bui, D. (2020). Bedload transport rate prediction: Application of novel hybrid data mining techniques. Journal of Hydrology, 585, 124774. https://doi.org/10.1016/j.jhydrol.2020.124774
  • Khosravi, K., Panahi, M., & Tien Bui, D. (2018). Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrology and Earth System Sciences, 22(9), 4771–4792. https://doi.org/10.5194/hess-22-4771-2018
  • Kisi, O., Dailr, A. H., Cimen, M., & Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58. https://doi.org/10.1016/j.jhydrol.2012.05.031
  • Kisi, O., Genc, O., Dinc, S., & Zounemat-Kermani, M. (2016). Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Computers and Electronics in Agriculture, 122, 112–117. https://doi.org/10.1016/j.compag.2016.01.026
  • Kisi, O., & Yaseen, Z. M. (2019). The potential of hybrid evolutionary fuzzy intelligence model for suspended sediment concentration prediction. Catena, 174, 11–23. https://doi.org/10.1016/j.catena.2018.10.047
  • Kleinhans, M. G., van Dijk, W. M., van de Lageweg, W. I., Hoyal, D. C. J. D., Markies, H., van Maarseveen, M., Roosendaal, C., van Weesep, W., van Breemen, D., Hoendervoogt, R., & Cheshier, N. (2014). Quantifiable effectiveness of experimental scaling of river- and delta morphodynamics and stratigraphy. Earth-Science Reviews, 133, 43–61. https://doi.org/10.1016/j.earscirev.2014.03.001
  • Kouadio, L., Deo, R. C., Byrareddy, V., Adamowski, J. F., Mushtaq, S., & Phuong Nguyen, V. (2018). Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Computers and Electronics in Agriculture, 155, 324–338. doi:https://doi.org/10.1016/j.compag.2018.10.014
  • Latif, S. D., Chong, K. L., Ahmed, A. N., Huang, Y. F., Sherif, M., & El-Shafie, A. (2023). Sediment load prediction in Johor river: Deep learning versus machine learning models. Applied Water Science, 13(3), 79. https://doi.org/10.1007/s13201-023-01874-w
  • Li, S., & Yang, J. (2022). Modelling of suspended sediment load by Bayesian optimized machine learning methods with seasonal adjustment. Engineering Applications of Computational Fluid Mechanics, 16(1), 1883–1901. https://doi.org/10.1080/19942060.2022.2121944
  • Li, X., Cooper, J. R., & Plater, A. J. (2021). Quantifying erosion hazards and economic damage to critical infrastructure in river catchments: Impact of a warming climate. Climate Risk Management, 32, 100287. https://doi.org/10.1016/j.crm.2021.100287
  • Manning, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 20, 161–207.
  • Mao, L. (2012). The effect of hydrographs on bed load transport and bed sediment spatial arrangement. Journal of Geophysical Research: Earth Surface, 117(F3). http://doi.org/10.1029/2012JF002428
  • Melesse, A., Ahmad, S., McClain, M. E., Wang, X., & Lim, Y. H. (2011). Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98(5), 855–866. https://doi.org/10.1016/j.agwat.2010.12.012
  • Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. In Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research, 39–64.
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.
  • Moayedi, H., Aghel, B., Foong, L. K., & Bui, D. T. (2020). Feature validity during machine learning paradigms for predicting biodiesel purity. Fuel, 262, 116498. https://doi.org/10.1016/j.fuel.2019.116498
  • Moayedi, H., Ahmadi Dehrashid, A., & Nguyen Le, B. (2024). A novel problem-solving method by multi-computational optimization of artificial neural network for modelling and prediction of the flow erosion processes. Engineering Applications of Computational Fluid Mechanics, 18(1), 2300456. https://www.tandfonline.com/doi/full/10.108019942060.2023.2300456
  • Mustafa, A. S., Sulaiman, S. O., & Al_Alwani, K. M. (2017). Application of HEC-RAS model to predict sediment transport forEuphrates River fromHaditha toHeet. Journal of Engineering Sciences, 20(3), 570–577.
  • Nones, M. (2019). Dealing with sediment transport in flood risk management. Acta Geophysica, 67(2), 677–685. https://doi.org/10.1007/s11600-019-00273-7
  • Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4), 417–436. https://doi.org/10.1080/00221689009499058
  • Poorhosein, M., Afzalimehr, H., Sui, J., Singh, V. P., & Azareh, S. (2014). Empirical bed load transport equations. International Journal of Hydraulic Engineering, 3(3), 93–101. https://doi.org/10.5923/j.ijhe.20140303.03
  • Qiao, Q., Yunusa-Kaltungo, A., & Edwards, R. (2022). Feature selection strategy for machine learning methods in building energy consumption prediction. Energy Reports, 8, 13621–13654. https://doi.org/10.1016/j.egyr.2022.10.125
  • Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., & Courville, A. (2019). On the spectral bias of neural networks, International Conference on Machine Learning, May 2019.
  • Rahmati, O., Falah, F., Naghibi, A., Biggs, T., Soltani, M., Deo, R. C., Cerdà, A., Mohammadi, F., & Tien Bui, D. (2019). Land subsidence modelling using tree-based machine learning algorithms. Science of The Total Environment, 672, 239–252. https://doi.org/10.1016/j.scitotenv.2019.03.496
  • Recking, A. (2013). Simple method for calculating reach-averaged bed-load transport. Journal of Hydraulic Engineering, 139(1), 70–75. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000653
  • Recking, A. (2019). BedloadWeb. Retrieved April 25, 2022, from https://en.bedloadweb.com/.
  • Recking, A., Vázquez Tarrío, D., & Piton, G. (2023). The contribution of grain sorting to the dynamics of the bedload active layer. Earth Surface Processes and Landforms, 48(5), 979–996. https://doi.org/10.1002/esp.5530
  • Riahi-Madvar, H., & Seifi, A. (2018). Uncertainty analysis in bed load transport prediction of gravel bed rivers by ANN and ANFIS. Arabian Journal of Geosciences, 11(21), 688. https://doi.org/10.1007/s12517-018-3968-6
  • Rosgen, D. L., Silvey, H. L., & Frantila, D. (2006.). Watershed assessment of river stability and sediment supply (WARSSS). Wildland Hydrology.
  • Roushangar, K., & Koosheh, A. (2015). Evaluation of GA-SVR method for modeling bed load transport in gravel-bed rivers. Journal of Hydrology, 527, 1142–1152. https://doi.org/10.1016/j.jhydrol.2015.06.006
  • Samadianfard, S., Jarhan, S., Salwana, E., Mosavi, A., Shamshirband, S., & Akib, S. (2019). Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water, 11(9), 1934. https://doi.org/10.3390/w11091934
  • Schlossmacher, E. J. (1973). An iterative technique for absolute deviations curve fitting. Journal of the American Statistical Association, 68(344), 857–859. https://doi.org/10.1080/01621459.1973.10481436
  • Shahiri, P., Noori, M., Heydari, M., & Rashidi, M. (2016). Floodplain zoning simulation by using HEC-RAS and CCHE2D Models in the Sungai Maka River. Air Soil Water Res., 9(9), 55–62.
  • Shakya, D., Deshpande, V., Kumar, B., & Agarwal, M. (2023). Predicting total sediment load transport in rivers using regression techniques, extreme learning and deep learning models. Artificial Intelligence Review, 56(9), 10067–10098. https://doi.org/10.1007/s10462-023-10422-6
  • Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need Inf. Fusion.., 81, 84–90. https://doi.org/10.1016/j.inffus.2021.11.011
  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719
  • Vakharia, V., Gupta, V. K., & Kankar, P. K. (2016). A comparison of feature ranking techniques for fault diagnosis of ball bearing. Soft Computing, 20(4), 1601–1619. https://doi.org/10.1007/s00500-015-1608-6
  • Vakharia, V., Shah, M., Nair, P., Borade, H., Sahlot, P., & Wankhede, V. (2023). Estimation of Lithium-ion battery discharge capacity by integrating optimized explainable-AI and stacked LSTM model. Batteries, 9(2), 125. https://doi.org/10.3390/batteries9020125
  • Vu, M. T., Jardani, A., Massei, N., & Fournier, M. (2021). Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network. Journal of Hydrology, 597, 125776. https://doi.org/10.1016/j.jhydrol.2020.125776
  • Wainwright, J., Parsons, A. J., Cooper, J. R., Gao, P., Gillies, J. A., Mao, L., Orford, J, & Knight, P. G. (2015). The concept of transport capacity in geomorphology. Reviews of Geophysics, 53(4), 1155–1202. https://doi.org/10.1002/2014RG000474
  • Wilcock, P. R. (2001). Toward a practical method for estimating sediment transport rates in gravel bed rivers. Earth Surface Processes and Landforms, 26(13), 1395–1408. https://doi.org/10.1002/esp.301
  • Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2), 120–128. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120)
  • Zhang, K., Wang, Z. Y., & Liu, L. (2010). The effect of riverbed structure on bed load transport in mountain streams. River Flow 2010 - Dittrich, Koll, Aberle & Geisenhainer (eds),Bundesanstalt für Wasserbau ISBN 978-3-939230-00-7.