0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of model scale and airflow velocity on aerodynamic noise prediction for high-speed train leading car and bogie

, , &
Article: 2384445 | Received 24 Apr 2024, Accepted 20 Jul 2024, Published online: 02 Aug 2024

References

  • Baker, C. J., & Brockie, N. J. (1991). Wind tunnel tests to obtain train aerodynamic drag coefficients: Reynolds number and ground simulation effects. Journal of Wind Engineering and Industrial Aerodynamics, 38(1), 23–28. https://doi.org/10.1016/0167-6105(91)90024-Q
  • Chang, C., Li, T., Qin, D., & Zhang, J. Y. (2022). On the Scale size of the aerodynamic characteristics of a high-speed train. Journal of Applied Fluid Mechanics, 15(1), 209–220.
  • Curle, N. (1955). The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 231(1187), 505–514.
  • Dong, T. Y., Liang, X. F., Krajnovic, S., Xiong, X. H., & Zhou, W. (2019). Effects of simplifying train bogies on surrounding flow and aerodynamic forces. Journal of Wind Engineering and Industrial Aerodynamics: The Journal of the International Association for Wind Engineering, 191, 170–182. https://doi.org/10.1016/j.jweia.2019.06.006
  • Ffowcs-Williams, J. E., & Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151), 321–342.
  • Guo, Z., Liu, T., Xia, Y., & Liu, Z. (2022). Aerodynamic influence of the clearance under the cowcatcher of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 220, 104844. https://doi.org/10.1016/j.jweia.2021.104844
  • Han, Y. D., & Yao, S. (2017). Scale effect analysis in aerodynamic performance of high-speed train. Journal of Zhejiang University (Engineering Science), 51(12), 2383–2391.
  • He, Y., Thompson, D., & Hu, Z. W. (2024). Aerodynamic noise from a high-speed train bogie with complex geometry under a leading car. Journal of Wind Engineering and Industrial Aerodynamics, 244, 105617. https://doi.org/10.1016/j.jweia.2023.105617
  • Lan, J., & Han, J. (2017). Research on the radiation characteristics of aerodynamic noises of a simplified bogie of the high-speed train. Journal of Vibroengineering, 19(3), 2280–2293. https://doi.org/10.21595/jve.2017.18229
  • Lauterbach, A., Ehrenfried, K., Loose, S., & Wagner, C. (2012). Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics. International Journal of Aeroacoustics, 11(3–4), 411–446. https://doi.org/10.1260/1475-472X.11.3-4.411
  • Li, Z. M., Li, Q. L., & Yang, Z. G. (2022b). Flow structure and far-field noise of high-speed train under ballast track. Journal of Wind Engineering and Industrial Aerodynamics, 220, 104858. https://doi.org/10.1016/j.jweia.2021.104858
  • Li, T., Qin, D., & Zhang, J. Y. (2019). Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind. Chinese Journal of Mechanical Engineering, 32(1), 85. https://doi.org/10.1186/s10033-019-0402-2
  • Li, T., Qin, D., Zhou, N., Zhang, J. Y., & Zhang, W. H. (2022a). Numerical study on the aerodynamic and acoustic scale effects for high-speed train body and pantograph. Applied Acoustics, 196, 108886. https://doi.org/10.1016/j.apacoust.2022.108886
  • Liang, X. F., Liu, H. F., Dong, T. Y., Yang, Z. G., & Tan, X. M. (2020). Aerodynamic noise characteristics of high-speed train foremost bogie section. Journal of Central South University, 27(6), 1802–1813. https://doi.org/10.1007/s11771-020-4409-8
  • Lighthill, M. J. (1952). On sound generated aerodynamically. I. General theory. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 211(1107), 564–587.
  • Liu, H. K., Chen, R. R., Zhou, S. Q., Gao, Y. P, Zou, Y., Liu, T. H., & Zhao, Y. T. (2023). Numerical study on the effect of pantograph fairing on aerodynamic performance at various train heights. Engineering Applications of Computational Fluid Mechanics, 17(1), 2261521. https://doi.org/10.1080/19942060.2023.2261521
  • Liu, X. W., Zhang, J., Thompson, D., Iglesias, E. L., Squicciarini, G., Hu, Z. W., Toward, M., & Lurcock, D. (2021). Aerodynamic noise of high-speed train pantographs: Comparisons between field measurements and an updated component-based prediction model. Applied Acoustics, 175, 107791. https://doi.org/10.1016/j.apacoust.2020.107791
  • Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4(1), 625–632.
  • Minelli, G., Yao, H. D., Andersson, N., Höstmad, P., Forssén, J., & Krajnovic, S. (2020). An aeroacoustic study of the flow surrounding the front of a simplified ICE3 high-speed train model. Applied Acoustics, 160, 107125. https://doi.org/10.1016/j.apacoust.2019.107125
  • Nagakura, K. (2006). Localization of aerodynamic noise sources of Shinkansen trains. Journal of Sound and Vibration, 293(3), 547–556. https://doi.org/10.1016/j.jsv.2005.08.043
  • Niu, J. Q., Liang, X. F., Zhou, D., & Liu, F. (2016). Reynolds number effect of unsteady aerodynamic force and spectrum characteristics of high-speed train. Journal of South China University of Technollogy (Natural Science Edition), 44(8), 82–90.
  • Orellano, A., & Schober, M. (2006). Aerodynamic performance of a typical highspeed train. In Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics (pp. 18–25). Elounda, Greece.
  • Phan, V. L., Tanaka, H., Nagatani, T., Wakamatsu, M., & Yasuki, T. (2017). A CFD analysis method for prediction of vehicle exterior wind noise. SAE International Journal of Passenger Cars-Mechanical Systems, 10(1), 286–299. https://doi.org/10.4271/2017-01-1539
  • Qin, D., Li, T., Zhang, J. Y., & Zhou, N. (2023). Numerical study on aerodynamic drag and noise of high-speed pantograph by introducing spanwise waviness. Engineering Applications of Computational Fluid Mechanics, 17(1), 2260463. https://doi.org/10.1080/19942060.2023.2260463
  • Qin, D., Li, T., Zhou, N., & Zhang, J. Y. (2024). Aerodynamic drag and noise reduction of a pantograph of high-speed trains with a novel cavity structure. Physics of Fluids, 36(2), 027108. https://doi.org/10.1063/5.0188831
  • Shi, F. C., Shi, F. S., Tian, X. D., & Wang, T. T. (2022). Numerical Study on Aerodynamic Noise Reduction of Pantograph. Applied Sciences, 12(21), 10720. https://doi.org/10.3390/app122110720
  • Shi, J. W., & Zhang, J. Y. (2024). Effect of bogie cavity endwall inclination on flow field and aerodynamic noise in the bogie region of high-speed trains. Computer Modeling in Engineering & Sciences, 139(2), 2175–2195. https://doi.org/10.32604/cmes.2023.043539
  • Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  • Sima, M., Gurr, A. A., Orellano, A., & Mainline, B. (2008). Validation of CFD for the flow under a train with 1:7 scale wind tunnel measurements. In Proceedings of the BBAA VI International Colloquium on Bluff Bodies Aerodynamics and Applications.
  • Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. k., & Travin, A. (2006). A new version of detached eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20(3), 181–195. https://doi.org/10.1007/s00162-006-0015-0
  • Talotte, C., Gautier, P. E., Thompson, D. J., & Hanson, C. (2003). Identification, modelling and reduction potential of railway noise sources: A critical survey. Journal of Sound and Vibration, 267(3), 447–468. https://doi.org/10.1016/S0022-460X(03)00707-7
  • Thompson, D. J., Iglesias, E. L., Liu, X. W., Zhu, J. Y., & Hu, Z. W. (2015). Recent developments in the prediction and control of aerodynamic noise from high-speed trains. International Journal of Rail Transportation, 3(3), 119–150. https://doi.org/10.1080/23248378.2015.1052996
  • Tian, H. Q. (2019). Review of research on high-speed railway aerodynamics in China. Transportation Safety and Environment, 1(1), 1–21. https://doi.org/10.1093/tse/tdz014
  • Zhao, Y. Y., Yang, Z. G., Li, Q. L., & Xia, C. (2020). Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system. Applied Acoustics, 169, 107506. https://doi.org/10.1016/j.apacoust.2020.107506
  • Zhu, C., Hemida, H., Flynn, D., Baker, C., Liang, X., & Zhou, D. (2017). Numerical simulation of the slipstream and aeroacoustic field around a high-speed train. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 231(6), 740–756. https://doi.org/10.1177/0954409716641150
  • Zhu, J. Y., Hu, Z. W., & Thompson, D. J. (2014). Flow simulation and aerodynamic noise prediction for a high-speed train wheelset. Aeroacoustics, 13(7-8), 533–552. https://doi.org/10.1260/1475-472X.13.7-8.533
  • Zhu, J. Y., Hu, Z. W., & Thompson, D. J. (2016). Flow behaviour and aeroacoustic characteristics of a simplified high-speed train bogie. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 230(7), 1642–1658. https://doi.org/10.1177/0954409715605129
  • Zhu, J. Y., Hu, Z. W., & Thompson, D. J. (2018). The flow and flow-induced noise behaviour of a simplified high-speed train bogie in the cavity with and without a fairing. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 232(3), 759–773. https://doi.org/10.1177/0954409717691619