0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficient aerodynamic shape optimization by using unsupervised manifold learning to filter geometric features

, &
Article: 2384465 | Received 29 Apr 2024, Accepted 20 Jul 2024, Published online: 31 Jul 2024

References

  • Achour, G., Sung, W. J., Pinon-Fischer, O. J., & Mavris, D. N. (2020). Development of a conditional generative adversarial network for airfoil shape optimization. AIAA Scitech 2020 Forum. https://doi.org/10.2514/6.2020-2261
  • Adjei, R. A., & Fan, C. (2024). Multi-objective design optimization of a transonic axial fan stage using sparse active subspaces. Engineering Applications of Computational Fluid Mechanics, 18(1), 2325488. https://doi.org/10.1080/19942060.2024.2325488
  • Bhola, S., Pawar, S., Balaprakash, P., & Maulik, R. (2023). Multi-fidelity reinforcement learning framework for shape optimization. Journal of Computational Physics, 482, 112018. https://doi.org/10.1016/j.jcp.2023.112018
  • Bletsos, G., Kühl, N., & Rung, T. (2021). Adjoint-based shape optimization for the minimization of flow-induced hemolysis in biomedical applications. Engineering Applications of Computational Fluid Mechanics, 15(1), 1095–1112. https://doi.org/10.1080/19942060.2021.1943532
  • Buja, A., Swayne, D. F., Littman, M. L., Dean, N., Hofmann, H., & Chen, L. (2008). Data visualization With multidimensional scaling. Journal of Computational and Graphical Statistics, 17(2), 444–472. https://doi.org/10.1198/106186008X318440
  • Chen, W., Chiu, K., & Fuge, M. (2019). Aerodynamic design optimization and shape exploration using generative adversarial networks. AIAA Scitech 2019 Forum, https://doi.org/10.2514/6.2019-2351
  • Chen, W., Fuge, M., & Chazan, J. (2017). Design manifolds capture the intrinsic complexity and dimension of design spaces. Journal of Mechanical Design, 139(5), 051102. https://doi.org/10.1115/1.4036134
  • Dai Z., Li T., Xiang Z. R., Zhang W., & Zhang J. (2023). Aerodynamic multi-objective optimization on train nose shape using feedforward neural network and sample expansion strategy. Engineering Applications of Computational Fluid Mechanics, 17(1), 2226187. https://doi.org/10.1080/19942060.2023.2226187
  • Dai, J., Liu, P., Qu, Q., Li, L., & Niu, T. (2022). Aerodynamic optimization of high-lift devices using a 2D-to-3D optimization method based on deep reinforcement learning and transfer learning. Aerospace Science and Technology, 121, 107348. https://doi.org/10.1016/j.ast.2022.107348
  • Decker, K., Schwartz, H. D., & Mavris, D. (2020). Dimensionality reduction techniques applied to the design of hypersonic aerial systems. Aiaa Aviation 2020 Forum, https://doi.org/10.2514/6.2020-3003
  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271. https://doi.org/10.1007/BF01386390
  • Du, X., He, P., & Martins, J. R. R. A. (2021). Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling. Aerospace Science and Technology, 113, 106701. https://doi.org/10.1016/j.ast.2021.106701
  • Esfahanian, V., Izadi, M. J., Bashi, H., Ansari, M., Tavakoli, A., & Kordi, M. (2024). Aerodynamic shape optimization of gas turbines: A deep learning surrogate model approach. Structural and Multidisciplinary Optimization, 67(1), 2. https://doi.org/10.1007/s00158-023-03703-9
  • Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6), 345–345. https://doi.org/10.1145/367766.368168
  • Fukami, K., & Taira, K. (2023). Grasping extreme aerodynamics on a low-dimensional manifold. Nature Communications, 14(1), 6480. https://doi.org/10.1038/s41467-023-42213-6
  • Izenman, A. J. (2012). Introduction to manifold learning. WIRES Computational Statistics, 4(5), 439–446. https://doi.org/10.1002/wics.1222
  • Jakobsson, S., & Amoignon, O. (2007). Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Computers & Fluids, 36(6), 1119–1136. https://doi.org/10.1016/j.compfluid.2006.11.002
  • Jiang H., Xu M., & Yao W. (2022). Aerodynamic shape optimization Of co-Flow jet airfoil using a multi-Island genetic algorithm. Physics of Fluids, 34(12), 125120. https://doi.org/10.1063/5.0124372
  • Kaya H., & Tuncer İ. H. (2021). Discrete adjoint-based aerodynamic shape optimization framework for natural laminar flows. AIAA Journal 30, 1–16. https://doi.org/10.2514/1.J059923.
  • Kou, J., Botero-Bolívar, L., Ballano, R., Marino, O., De Santana, L., Valero, E., & Ferrer, E. (2023). Aeroacoustic airfoil shape optimization enhanced by autoencoders. Expert Systems with Applications, 217, 119513. https://doi.org/10.1016/j.eswa.2023.119513
  • Kulfan, B. (2007). A universal parametric geometry representation method - "CST". 45th AIAA Aerospace Sciences Meeting and Exhibit, https://doi.org/10.2514/6.2007-62
  • Li, J., Cai, J., & Qu, K. (2019a). Surrogate-based aerodynamic shape optimization with the active subspace method. Structural and Multidisciplinary Optimization, 59(2), 403–419. https://doi.org/10.1007/s00158-018-2073-5
  • Li, R., Deng, K., Zhang, Y., & Chen, H. (2018). Pressure distribution guided supercritical wing optimization. Chinese Journal of Aeronautics, 31(9), 1842–1854. https://doi.org/10.1016/j.cja.2018.06.021
  • Li, J., He, S., & Martins, J. R. R. A. (2019b). Data-driven constraint approach to ensure low-speed performance in transonic aerodynamic shape optimization. Aerospace Science and Technology, 92, 536–550. https://doi.org/10.1016/j.ast.2019.06.008
  • Madhyastha, P., & Jain, R. (2019). On model stability as a function of random seed. arxiv preprint arxiv:1909.10447. http://arxiv.org/abs/1909.10447.
  • Marsland, S. (2015). Machine learning: An algorithmic perspective (2nd ed.). CRC Press.
  • Martins, J. R. R. A. (2022). Aerodynamic design optimization: Challenges and perspectives. Computers & Fluids, 239, 105391. https://doi.org/10.1016/j.compfluid.2022.105391
  • Mckay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55–61. https://doi.org/10.1080/00401706.2000.10485979
  • McLean D. (2012). Understanding aerodynamics: Arguing from the real physics. 1st ed. Wiley. https://doi.org/10.1002/9781118454190
  • Mohebbi F., Evans B., & Sellier M. (2021). On an exact step length in gradient-based aerodynamic shape optimization—part II: Viscous flows. Fluids, 6(3), 106. https://doi.org/10.3390/fluids6030106
  • Noyel, G., Angulo, J., & Jeulin, D. (2011). Fast computation of all pairs of geodesic distances. Image Analysis & Stereology, 30(2), 101. https://doi.org/10.5566/ias.v30.p101-109
  • Oliveira N.L., Rendón M.A., Lemonge A.C.D.C., & Hallak P.H. (2024). Multi-objective optimum design of propellers using the blade element theory and evolutionary algorithms. Evolutionary Intelligence, 17(3), 1623-1653. https://doi.org/10.1007/s12065-023-00855-x
  • Prautzsch H., Boehm W., & Paluszny M. (2002). Bézier and B-spline techniques. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04919-8
  • Qian J., Cheng Y., Zhang J., Liu J., & Zhan D. (2021). A parallel constrained efficient global optimization algorithm for expensive constrained optimization problems. Engineering Optimization, 53(2), 300-320. https://doi.org/10.1080/0305215X.2020.1722118
  • Rao, R. V., & Patel, V. (2012). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710–720. https://doi.org/10.1016/j.scient.2012.12.005
  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315. https://doi.org/10.1016/j.cad.2010.12.015
  • Raul, V., & Leifsson, L. (2021). Surrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using kriging regression and infill criteria. Aerospace Science and Technology, 111, 106555. https://doi.org/10.1016/j.ast.2021.10655
  • Samareh, J. (2004). Aerodynamic shape optimization based on free-form deformation. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, https://doi.org/10.2514/6.2004-4630
  • Shirvani, A., Nili-Ahmadabadi, M., & Ha, M. Y. (2023). Machine learning-accelerated aerodynamic inverse design. Engineering Applications of Computational Fluid Mechanics, 17(1), 2237611. https://doi.org/10.1080/19942060.2023.2237611
  • Singh G. S., & Acerbi L. (2023). PyBADS: Fast and robust black-box optimization in Python. arxiv preprint arxiv:2306.15576. http://arxiv.org/abs/2306.15576 .
  • Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. https://doi.org/10.1126/science.290.5500.2319
  • Wang, K., Han, Z. H., Zhang, K. S., & Song, W. P. (2023b). An efficient geometric constraint handling method for surrogate-based aerodynamic shape optimization. Engineering Applications of Computational Fluid Mechanics, 24(1), 2153173. https://doi.org/10.1080/19942060.2022.2153173
  • Wang, C., Wang, L., Cao, C., Sun, G., Huang, Y., & Zhou, S. (2023a). Aerodynamic optimization framework for a three-dimensional nacelle based on deep manifold learning-assisted geometric multiple dimensionality reduction. Aerospace, 10(7), 573. https://doi.org/10.3390/aerospace10070573
  • Wu N., Mader C. A., & Martins J. R. R. A. (2022). A gradient-Based sequential multifidelity approach to multidisciplinary design optimization. Structural and Multidisciplinary Optimization, 65(4), 131. https://doi.org/10.1007/s00158-022-03204-1
  • Wu M. Y., Yuan X. Y., Chen Z. H., Wu W. T., Hua Y., & Aubry N. (2023). Airfoil shape optimization using genetic algorithm coupled deep neural networks. Physics of Fluids, 35(8), 085140. doi:10.1063/5.0160954
  • Wu, X., Zhang, W., Peng, X., & Wang, Z. (2019). Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method. Aerospace Science and Technology, 84, 632–640. https://doi.org/10.1016/j.ast.2018.08.005
  • Yang Y., Xue Y., Zhao W., Yang H., & Wu C. (2024). Aerodynamic shape optimization based on proper orthogonal decomposition reparameterization under small training sets. Aerospace Science and Technology (Elmsford, N Y ), 147, 109072.
  • Yang Y., Zhao W., Xue Y., Yang H., & Wu C. (2023). Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance. Physics of Fluids, 35(6). doi: 10.1063/5.0153970
  • Yonekura, K., & Suzuki, K. (2021). Data-driven design exploration method using conditional variational autoencoder for airfoil design. Structural and Multidisciplinary Optimization, 64(2), 613–624. https://doi.org/10.1007/s00158-021-02851-0
  • Zachary, J. G. (2017). Active subspaces of airfoil shape parameterizations. AIAA Journal, 56(5), 2003–2017. https://doi.org/10.2514/1.j056054.
  • Zachary J. G. & Paul G. C. (2018). Active subspaces of airfoil shape parameterizations. AIAA Journal, 56(5), 2003–2017. https://doi.org/10.2514/1.j056054
  • Zhang, W., Li, X., Ye, Z., & Jiang, Y. (2015). Mechanism of frequency lock-in in vortex-induced vibrations at low reynolds numbers. Journal of Fluid Mechanics, 783, 72–102. https://doi.org/10.1017/jfm.2015.548
  • Zhang, W., Peng, X., Kou, J., & Wang, X. (2024). Heterogeneous data-driven aerodynamic modeling based on physical feature embedding. Chinese Journal of Aeronautics, 37(3), 1–6. https://doi.org/10.1016/j.cja.2023.11.010
  • Zhang, X., Xie, F., Ji, T., Zhu, Z., & Zheng, Y. (2021). Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization. Computer Methods in Applied Mechanics and Engineering, 373, 113485. https://doi.org/10.1016/j.cma.2020.113485