1,729
Views
13
CrossRef citations to date
0
Altmetric
Review Article

Genetic exchange and reassignment in Porphyromonas gingivalis

, &
Article: 1457373 | Received 24 Aug 2017, Accepted 19 Mar 2018, Published online: 12 Apr 2018

References

  • Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:1–9.
  • Olsen I. From the acta prize lecture 2014: the periodontal-systemic connection seen from a microbiological standpoint. Acta Odontol Scand. 2015;73(8):563.
  • Eke PI, Wei L, Borgnakke WS, et al. Periodontitis prevalence in adults ≥ 65 years of age, in the USA. Periodontol. 2000. 2016;72(1):76–95. DOI:10.1111/prd.12145
  • Zenobia C, Hajishengallis G. Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence. 2015;6(3):236–243.
  • Bryant J, Chewapreecha C, Bentley SD. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol. 2012;11:1283–1296. DOI:10.2217/fmb.12.108
  • Tribble GD, Rigney TW, Dao DH, et al. Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis. MBio. 2012;3(1). pii):e00231–11.
  • Kerr JE, Abramian JR, Dao DH, et al. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis. PLoS One. 2014;9:e91696.
  • Dashper SG, Mitchell HL, Seers CA, et al. Porphyromonas gingivalis uses specific domain rearrangements and allelic exchange to generate diversity in surface virulence factors. Front Microbiol. 2017;8:48.
  • Tribble GD, Lamont GJ, Progulske-Fox A, et al. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J Bacteriol. 2007;189(17):6382–6388.
  • Naito M, Hirakawa H, Yamashita A, et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 2008;15(4):215–225.
  • Chen T, Siddiqui H, Olsen I. In silico comparison of 19 Porphyromonas gingivalis strains in genomics, phylogenetics, phylogenomics and functional genomics. Front Cell Infect Microbiol. 2017;7:28.
  • Nagano K, Hasegawa Y, Abiko Y, et al. Porphyromonas gingivalis FimA fimbriae: fimbrial assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes. PLoS One. 2012;7:e43722.
  • Nagano K, Abiko Y, Yoshida Y, et al. Genetic and antigenic analyses of Porphyromonas gingivalis fimA fimbriae. Mol Oral Microbiol. 2013;28:392–403.
  • Nakagawa I, Amano A, Ohara-Nemoto Y, et al. Identification of a new variant of fimA gene of Porphyromonas gingivalis and its distribution in adults and disabled populations with periodontitis. J Periodontal Res. 2002;37(6):425–432.
  • Enersen M, Olsen I, Kvalheim Ø, et al. fimA genotypes and multilocus sequence types of Porphyromonas gingivalis from patients with periodontitis. J Clin Microbiol. 2008;46:31–42.
  • Missailidis CG, Umeda JE, Ota-Tsuzuki C, et al. Distribution of fimA genotypes of Porphyromonas gingivalis in subjects with various periodontal conditions. Oral Microbiol Immunol. 2004;19:224–229.
  • Zhao L, Wu YF, Meng S, et al. Prevalence of fimA genotypes of Porphyromonas gingivalis and periodontal health status in Chinese adults. J Periodontal Res. 2007;42:511–517.
  • Zheng C, Wu J, Xie H. Differential expression and adherence of Porphyromonas gingivalis FimA genotypes. Mol Oral Microbiol. 2011;26:388–395.
  • Nakano K, Kuboniwa M, Nakagawa I, et al. Comparison of inflammatory changes caused by Porphyromonas gingivalis with distinct fimA genotypes in a mouse abscess model. Oral Microbiol Immunol. 2004;19:205–209.
  • Tribble GD, Kerr JE, Wang BY. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol. 2013;8(5):607–620.
  • Amano A, Nakagawa I, Okahashi N, et al. Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J Periodontal Res. 2004;39:136–142.
  • Nagano K, Hasegawa Y, Yoshida Y, et al. A major fimbrilin variant of Mfa1 fimbriae in Porphyromonas gingivalis. J Dent Res. 2015;94(8):1143–1148.
  • Hasegawa Y, Iwami J, Sato K, et al. Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa 2. Microbiology. 2009;155(Pt 10):3333–3347.
  • Enersen M, Nakano K, Amano A. Porphyromonas gingivalis fimbriae. J Oral Microbiol. 2013;5. DOI:10.3402/jom.v5i0.20265.
  • Fujiwara T, Morishima S, Takahashi I, et al. Molecular cloning and sequencing of the fimbrilin gene of Porphyromonas gingivalis strains and characterization of recombinant proteins. Biochem Biophys Res Commun. 1993;197(1):241–247.
  • Kato T, Kawai S, Nakano K, et al. Virulence of Porphyromonas gingivalis is altered by substitution of fimbria gene with different genotype. Cell Microbiol. 2007;9(3):753–765.
  • Spratt BG, Maiden MC. Bacterial population genetics, evolution and epidemiology. Philos Trans R Soc Lond B Biol Sci. 1999;354(1384):701–710.
  • Enersen M. Porphyromonas gingivalis: a clonal pathogen?: diversities in housekeeping genes and the major fimbriae gene. J Oral Microbiol. 2011;3. DOI:10.3402/jom.v3i0.8487.
  • Frandsen EV, Poulsen K, Curtis MA, et al. Evidence of recombination in Porphyromonas gingivalis and random distribution of putative virulence markers. Infect Immun. 2001;69(7):4479–4485.
  • Olsen I, Tribble GD, Fiehn N-E, et al. Bacterial sex in dental plaque. J Oral Microbiol. 2013;5. DOI:10.3402/jom.v5i0.20736.
  • Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000;54:641–679.
  • Chen T, Hosogi Y, Nishikawa K, et al. Comparative whole-genome analysis of virulent and avirulent strains of Porphyromonas gingivalis. J Bacteriol. 2004;186(16):5473–5479.
  • Curtis MA, Hanley SA, Aduse-Opoku J. The rag locus of Porphyromonas gingivalis: a novel pathogenicity island. J Periodontal Res. 1999;34(7):400–405.
  • Hall LM, Fawell SC, Shi X, et al. Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis. Infect Immun. 2005;73(7):4253–4262.
  • Su Z, Kong F, Wang S, et al. The rag locus of Porphyromonas gingivalis might arise from Bacteroides via horizontal gene transfer. Eur J Clin Microbiol Infect Dis. 2010;29(4):429–437.
  • Califano JV, Kitten T, Lewis JP, et al. Characterization of Porphyromonas gingivalis insertion sequence-like element ISPg5. Infect Immun. 2000;68(9):5247–5253.
  • Enersen M, Olsen I, Caugant DA. Genetic diversity of Porphyromonas gingivalis isolates recovered from single “refractory” periodontitis sites. Appl Environ Microbiol. 2008;74(18):5817–5821.
  • Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 2010;8(8):552–563.
  • Naito M, Sato K, Shoji M, et al. Characterization of the Porphyromonas gingivalis conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer. Microbiology. 2011;157(Pt7):2022–2032.
  • Clewell DB, Flannagan SE. The conjugative transposons of Gram-positive bacteria. In: Clewell DB, editor. Bacterial conjugation. New York: Plenum Press; 1993. p. 369–393.
  • Burmistrz M, Dudek B, Staniec D, et al. Functional analysis of Porphyromonas gingivalis W83 CRISPR-Cas systems. J Bacteriol. 2015;197(16):2631–2641.
  • Watanabe T, Nozawa T, Aikawa C, et al. CRISPR regulation of intraspecies diversification by limiting IS transposition and intercellular recombination. Genome Biol Evol. 2013;5:1099–1114.
  • Lee KY, Hopkins JD, Syvanen M. Direct involvement of IS26 in an antibiotic resistance operon. J Bacteriol. 1990;172(6):3229–3236.
  • Podglajen I, Breuil J, Collatz E. Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol. 1994;12(1):105–114.
  • Podglajen I, Breuil J, Casin I, et al. Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. J Bacteriol. 1995;177(18):5270–5275.
  • Terai A, Baba K, Shirai H, et al. Evidence for insertion sequence-mediated spread of the thermostable direct hemolysin gene among Vibrio species. J Bacteriol. 1991;173(16):5036–5046.
  • Garcia MI, Labigne A, Le Bouguenec C. Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences. J Bacteriol. 1994;176(24):7601–7613.
  • Ou JT, Baron LS, Rubin FA, et al. Specific insertion and deletion of insertion sequence 1-like DNA element causes the reversible expression of the virulence capsular antigen Vi of Citrobacter freundii in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(12):4402–4405.
  • Simonet M, Riot B, Fortineau N, et al. Invasin production by Yersinia pestis is abolished by insertion of an IS200-like element within the inv gene. Infect Immun. 1996;64(1):375–379.
  • Lewis JP, Macrina FL. IS195, an insertion sequence-like element associated with protease genes in Porphyromonas gingivalis. Infect Immun. 1998;66(7):3035–3042.
  • Berg DE. Transposon Tn5. In: Berg DE, Howe MM, editors. Mobile DNA. Washington, D.C.:  American Society for Microbiology (ASM); 1989. p. 185–210.
  • Dyer DW, Bilalis G, Michel JH, et al. Conjugal transfer of plasmid and transposon DNA from Escherichia coli into Porphyromonas gingivalis. Biochem Biophys Res Commun. 1992;186(2):1012–1019.
  • Tatusova T, DiCuccio M, Badretdin A, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–6624.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.
  • Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.
  • Darling AE, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5(6): e11147. DOI:10.1371/journal.pone.0011147.
  • Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007;8:172.