1,978
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Characterization of the phosphotransacetylase-acetate kinase pathway for ATP production in Porphyromonas gingivalis

, , , &
Article: 1588086 | Received 03 Dec 2018, Accepted 25 Feb 2019, Published online: 04 Apr 2019

References

  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–14.
  • Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–725.
  • Scannapieco FA. Position paper of The American academy of periodontology: periodontal disease as a potential risk factor for systemic diseases. J Periodontol. 1998;69(7):841–850.
  • Dietrich T, Jimenez M, Krall Kaye EA, et al. Age-dependent associations between chronic periodontitis/edentulism and risk of coronary heart disease. Circulation. 2008;117(13):1668–1674.
  • Campus G, Salem A, Uzzau S, et al. Diabetes and periodontal disease: a case-control study. J Periodontol. 2005;76(3):418–425.
  • de Pablo P, Chapple IL, Buckley CD, et al. Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol. 2009;5(4):218–224.
  • Shah HN, Williams RAD. Utilization of glucose and amino acids by Bacteroides intermedius and Bacteroides gingivalis. Curr Microbiol. 1987;15(5):241–246.
  • Takahashi N, Sato T, Yamada T. Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J Bacteriol. 2000;182(17):4704–4710.
  • Takahashi N, Sato T. Preferential utilization of dipeptides by Porphyromonas gingivalis. J Dent Res. 2001;80(5):1425–1429.
  • Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69(1):12–50.
  • Klein AH, Shulla A, Reimann SA, et al. The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol. 2007;189(15):5574–5581.
  • Wolfe AJ, Chang DE, Walker JD, et al. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol. 2003;48(4):977–988.
  • Ramos-Montañez S, Kazmierczak KM, Hentchel KL, et al. Instability of ackA (acetate kinase) mutations and their effects on acetyl phosphate and ATP amounts in Streptococcus pneumoniae D39. J Bacteriol. 2010;192(24):6390–6400.
  • Pruss BM, Verma K, Samanta P, et al. Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation. Arch Microbiol. 2010;192(9):715–728.
  • Kakuda H, Shiroishi K, Hosono K, et al. Construction of Pta-Ack pathway deletion mutants of Escherichia coli and characteristic growth profiles of the mutants in a rich medium. Biosci Biotechnol Biochem. 1994;58(12):2232–2235.
  • Kim JN, Ahn SJ, Burne RA. Genetics and physiology of acetate metabolism by the Pta-Ack pathway of Streptococcus mutans. Appl Environ Microbiol. 2015;81(15):5015–5025.
  • Kuit W, Minton NP, López-Contreras AM, et al. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl Microbiol Biotechnol. 2012;94(3):729–741.
  • Zhu Y, Liu X, Yang ST. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnol Bioeng. 2005;90(2):154–166.
  • Grundy FJ, Waters DA, Allen SH, et al. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol. 1993;175(22):7348–7355.
  • Grundy FJ, Waters DA, Takova TY, et al. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol Microbiol. 1993;10(2):259–271.
  • Chan SH, Norregaard L, Solem C, et al. Acetate kinase isozymes confer robustness in acetate metabolism. PloS One. 2014;9(3):e92256.
  • Sadykov MR, Thomas VC, Marshall DD, et al. Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J Bacteriol. 2013;195(13):3035–3044.
  • Imai K, Ochiai K, Okamoto T. Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification. J Immunol. 2009;182(6):3688–3695.
  • Nelson KE, Fleischmann RD, DeBoy RT, et al. Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol. 2003;185(18):5591–5601.
  • Naito M, Hirakawa H, Yamashita A, et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 2008;15(4):215–225.
  • Horton RM, Hunt HD, Ho SN, et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989;77(1):61–68.
  • Yoshida Y, Sato M, Kezuka Y, et al. Acyl-CoA reductase PGN_0723 utilizes succinyl-CoA to generate succinate semialdehyde in a butyrate-producing pathway of Porphyromonas gingivalis. Arch Biochem Biophys. 2016;596:138–148.
  • Pace CN, Vajdos F, Fee L, et al. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995;4(11):2411–2423.
  • Lundie LL Jr., Ferry JG. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J Biol Chem. 1989;264(31):18392–18396.
  • Ingram-Smith C, Gorrell A, Lawrence SH, et al. Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase. J Bacteriol. 2005;187(7):2386–2394.
  • Yoshida Y, Sasaki T, Ito S, et al. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis. Microbiology. 2009;155(Pt 3):968–978.
  • Sato M, Yoshida Y, Nagano K, et al. Three CoA transferases involved in the production of short chain fatty acids in Porphyromonas gingivalis. Front Microbiol. 2016;7:1146.
  • Nakano Y, Yoshida Y, Yamashita Y, et al. Construction of a series of pACYC-derived plasmid vectors. Gene. 1995;162(1):157–158.
  • Nakayama K, Kadowaki T, Okamoto K, et al. Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem. 1995;270(40):23619–23626.
  • Nagano K, Murakami Y, Nishikawa K, et al. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J Med Microbiol. 2007;56(Pt 11):1536–1548.
  • Winter G, Waterman DG, Parkhurst JM, et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr D Struct Biol. 2018;74(Pt 2):85–97.
  • Evans P. Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 1):72–82.
  • Winter G. xia2: an expert system for macromolecular crystallography data reduction. J Appl Cryst. 2010;43(1):186.
  • Vagin A, Teplyakov A. Molrep: an automated program for molecular replacement. J Appl Cryst. 1997;30:1022–1025.
  • Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381–3385.
  • Lawrence SH, Luther KB, Schindelin H, et al. Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. J Bacteriol. 2006;188(3):1143–1154.
  • Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–2132.
  • Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53(Pt 3):240–255.
  • Iyer PP, Lawrence SH, Luther KB, et al. Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila. Structure. 2004;12(4):559–567.
  • Miles RD, Gorrell A, Ferry JG. Evidence for a transition state analog, MgADP-aluminum fluoride-acetate, in acetate kinase from Methanosarcina thermophila. J Biol Chem. 2002;277(25):22547–22552.
  • Miles RD, Iyer PP, Ferry JG. Site-directed mutational analysis of active site residues in the acetate kinase from Methanosarcina thermophila. J Biol Chem. 2001;276(48):45059–45064.
  • Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–797.
  • Buss KA, Cooper DR, Ingram-Smith C, et al. Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J Bacteriol. 2001;183(2):680–686.
  • Singh-Wissmann K, Ingram-Smith C, Miles RD, et al. Identification of essential glutamates in the acetate kinase from Methanosarcina thermophila. J Bacteriol. 1998;180(5):1129–1134.
  • Singh-Wissmann K, Miles RD, Ingram-Smith C, et al. Identification of essential arginines in the acetate kinase from Methanosarcina thermophila. Biochemistry (Mosc). 2000;39(13):3671–3677.
  • Gorrell A, Lawrence SH, Ferry JG. Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila. J Biol Chem. 2005;280(11):10731–10742.
  • Lawrence SH, Ferry JG. Steady-state kinetic analysis of phosphotransacetylase from Methanosarcina thermophila. J Bacteriol. 2006;188(3):1155–1158.
  • Knorr R, Ehrmann MA, Vogel RF. Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. Microbiol Res. 2001;156(3):267–277.
  • Brinsmade SR, Escalante-Semerena JC. In vivo and in vitro analyses of single-amino acid variants of the Salmonella enterica phosphotransacetylase enzyme provide insights into the function of its N-terminal domain. J Biol Chem. 2007;282(17):12629–12640.
  • Pelroy RA, Whiteley HR. Kinetic properties of phosphotransacetylase from Veillonella alcalescens. J Bacteriol. 1972;111(1):47–55.
  • Campos-Bermudez VA, Bologna FP, Andreo CS, et al. Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. FEBS J. 2010;277(8):1957–1966.
  • Rasche ME, Smith KS, Ferry JG. Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophila. J Bacteriol. 1997;179(24):7712–7717.
  • Winzer K, Lorenz K, Durre P. Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. Microbiology. 1997;143(Pt 10):3279–3286.
  • Hurley JH. The sugar kinase/heat shock protein 70/actin superfamily: implications of conserved structure for mechanism. Annu Rev Biophys Biomol Struct. 1996;25:137–162.
  • Gorrell A, Ferry JG. Investigation of the Methanosarcina thermophila acetate kinase mechanism by fluorescence quenching. Biochemistry (Mosc). 2007;46(49):14170–14176.
  • Ingram-Smith C, Barber RD, Ferry JG. The role of histidines in the acetate kinase from Methanosarcina thermophila. J Biol Chem. 2000;275(43):33765–33770.
  • Reinscheid DJ, Schnicke S, Rittmann D, et al. Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology. 1999;145(Pt 2):503–513.
  • Klein BA, Tenorio EL, Lazinski DW, et al. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics. 2012;13:578.
  • Hutcherson JA, Gogeneni H, Yoder-Himes D, et al. Comparison of inherently essential genes of Porphyromonas gingivalis identified in two transposon-sequencing libraries. Mol OralMicrobiol. 2016;31(4):354–364.
  • Müller V, Hess V. The minimum biological energy quantum. Front Microbiol. 2017;8:2019.
  • Lovell SC, Davis IW, Arendall WB 3rd, et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003;50(3):437–450.
  • Hendrickson EL, Xia Q, Wang T, et al. Pathway analysis for intracellular Porphyromonas gingivalis using a strain ATCC 33277 specific database. BMC Microbiol. 2009;9:185.
  • Nelson KE, Zinder SH, Hance I, et al. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol. 2003;5(11):1212–1220.