1,559
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Carbon source utilization patterns in dental plaque and microbial responses to sucrose, lactose, and phenylalanine consumption in severe early childhood caries

, , , , &
Article: 1782696 | Received 14 Oct 2019, Accepted 10 Jun 2020, Published online: 23 Jun 2020

References

  • Seow WK. Early Childhood Caries. Pediatr Clin North Am. 2018;65:941–12.
  • Ge Y, Caufield PW, Fisch GS, et al. Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries Res. 2008;42(444–448). DOI:10.1159/000159608
  • Kanasi E, Dewhirst FE, Chalmers NI, et al. Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 2010;44(485–497). DOI:10.1159/000320158
  • Hughes CV, Dahlan M, Papadopolou E, et al. Aciduric microbiota and mutans streptococci in severe and recurrent severe early childhood caries. Pediatr Dent. 2012;34:e16–23.
  • Wang Y, Zhang J, Chen X, et al. Profiling of oral microbiota in early childhood caries using single-molecule real-time sequencing. Front Microbiol. 2017;8(2244). DOI:10.3389/fmicb.2017.02244
  • Ma C, Chen F, Zhang Y, et al. Comparison of oral microbial profiles between children with severe early childhood caries and caries-free children using the human oral microbe identification microarray. PLoS One. 2015;10(e0122075). DOI:10.1371/journal.pone.0122075
  • Kressirer CA, Smith DJ, King WF, et al. Scardovia wiggsiae and its potential role as a caries pathogen. J Oral Biosci. 2017;59(135–141). DOI:10.1016/j.job.2017.05.002
  • Tanner ACR, Kressirer CA, Rothmiller S, et al. The caries microbiome: implications for reversing dysbiosis. Adv Dent Res. 2018;29(78–85). DOI:10.1177/0022034517736496
  • Marsh PD. In sickness and in health-what does the oral microbiome mean to us? An ecological perspective. Adv Dent Res. 2018;29(60–65). DOI:10.1177/0022034517735295
  • Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol. 2014;6(1):24878.
  • Zhao W, Li W, Lin J, et al. Effect of sucrose concentration on sucrose-dependent adhesion and glucosyltransferase expression of S. mutans in children with severe early-childhood caries (S-ECC). Nutrients. 2014;6:3572–3586.
  • Assaf D, Steinberg D, Shemesh M. Lactose triggers biofilm formation by Streptococcus mutans. Int Dairy J. 2015;42:51–57.
  • Gupta P, Gupta N, Pawar AP, et al. Role of sugar and sugar substitutes in dental caries: a review. ISRN Dent. 2013;2013(519421). DOI:10.1155/2013/519421
  • Sheiham A. Sucrose and dental caries. Nutr Health. 1987;5(25–29). DOI:10.1177/026010608700500205
  • Paes Leme AF, Koo H, Bellato CM, et al. The role of sucrose in cariogenic dental biofilm formation–new insight. J Dent Res. 2006;85(878–887). DOI:10.1177/154405910608501002
  • Campbell RG, Zinner DD. Effect of certain dietary sugars on hamster caries. J Nutr. 1970;100(11–20). DOI:10.1093/jn/100.1.11
  • Bowen WH, Pearson SK, VanWuyckhuyse BC, et al. Influence of milk, lactose-reduced milk, and lactose on caries in desalivated rats. Caries Res. 1991;25(283–286). DOI:10.1159/000261377
  • Kakuta H, Iwami Y, Mayanagi H, et al. Xylitol inhibition of acid production and growth of mutans Streptococci in the presence of various dietary sugars under strictly anaerobic conditions. Caries Res. 2003;37(404–409). DOI:10.1159/000073391
  • Washio J, OGAWA T, SUZUKI K, et al. Amino acid composition and amino acid-metabolic network in supragingival plaque. Biomed Res. 2016;37(251–257). DOI:10.2220/biomedres.37.251
  • He J, Hwang G, Liu Y, et al. l-Arginine modifies the exopolysaccharide matrix and thwarts streptococcus mutans outgrowth within mixed-species oral biofilms. J Bacteriol. 2016;198(2651–2661). DOI:10.1128/jb.00021-16
  • Liu Y, Ren Z, Hwang G, et al. Therapeutic strategies targeting cariogenic biofilm microenvironment. Adv Dent Res. 2018;29(86–92). DOI:10.1177/0022034517736497
  • Bongaerts J, Kramer M, Muller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng. 2001;3(289–300). DOI:10.1006/mben.2001.0196
  • Masoudi Rad H, Rabiei M, Sobhani A, et al. Free amino acids in stimulated and unstimulated whole saliva: advantages or disadvantages. J Oral Rehabil. 2014;41(759–767). DOI:10.1111/joor.12197
  • Harada A. Effects of D-phenylalanine on dental caries in mice. J Dent Health. 1988;38(84–109). DOI:10.5834/jdh.38.84
  • Wyss C. Aspartame as a source of essential phenylalanine for the growth of oral anaerobes. FEMS Microbiol Lett. 1993;108(255–258). DOI:10.1111/j.1574-6968.1993.tb06111.x
  • Zhang Y, Zheng Y, Hu J, et al. Functional diversity of the microbial community in healthy subjects and periodontitis patients based on sole carbon source utilization. PLoS One. 2014;9(e91977). DOI:10.1371/journal.pone.0091977
  • Zhao Y, Zhong W-J, Xun Z, et al. Differences in carbon source usage by dental plaque in children with and without early childhood caries. Int J Oral Sci. 2017;9(12):e6–e6.
  • Gomez A, Nelson KE. The oral microbiome of children: development, disease, and implications beyond oral health. Microb Ecol. 2017;73(492–503). DOI:10.1007/s00248-016-0854-1
  • Richards VP, Alvarez AJ, Luce AR, et al. Microbiomes of site-specific dental plaques from children with different caries status. Infect Immun. 2017;85(8). DOI:10.1128/iai.00106-17
  • Xu H, Tian J, Hao W, et al. Oral microbiome shifts from caries-free to caries-affected status in 3-year-old Chinese children: a longitudinal study. Front Microbiol. 2018;9(2009). DOI:10.3389/fmicb.2018.02009
  • Xiao J, Grier A, Faustoferri RC, et al. Association between oral candida and bacteriome in children with severe ECC. J Dent Res. 2018;97(1468–1476). DOI:10.1177/0022034518790941
  • AAOP D. Policy on Early Childhood Caries (ECC): classifications, consequences, and preventive strategies. Pediatr Dent. 2016;38:52–54.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(335–336). DOI:10.1038/nmeth.f.303
  • Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(2194–2200). DOI:10.1093/bioinformatics/btr381
  • Escapa IF, Chen T, Huang Y, et al. New insights into human nostril microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems. 2018;3(e00187–00118). DOI:10.1128/mSystems.00187-18
  • Lozupone CA, Knight R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev. 2008;32(557–578). DOI:10.1111/j.1574-6976.2008.00111.x
  • Gao XJ, Fan Y, Kent RL Jr., et al. Association of caries activity with the composition of dental plaque fluid. J Dent Res. 2001;80(1834–1839). DOI:10.1177/00220345010800091201
  • Lingstrom P, van Ruyven FO, van Houte J, et al. The pH of dental plaque in its relation to early enamel caries and dental plaque flora in humans. J Dent Res. 2000;79(770–777). DOI:10.1177/00220345000790021101
  • Frandsen EV, Poulsen K, Kononen E, et al. Diversity of capnocytophaga species in children and description of capnocytophaga leadbetteri sp. nov. and capnocytophaga genospecies AHN8471. Int J Syst Evol Microbiol. 2008;58:324–336.
  • Wu CC, Johnson JL, Moore WE, et al. Emended descriptions of Prevotella denticola, Prevotella loescheii, Prevotella veroralis, and Prevotella melaninogenica. Int J Syst Bacteriol. 1992;42(536–541). DOI:10.1099/00207713-42-4-536
  • Nascimento MM, Gordan VV, Garvan CW, et al. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol. 2009;24(89–95). DOI:10.1111/j.1399-302X.2008.00477.x
  • Huang X, Schulte RM, Burne RA, et al. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Caries Res. 2015;49(165–176). DOI:10.1159/000365296
  • Anderson SA, Sissons CH, Coleman MJ, et al. Application of carbon source utilization patterns to measure the metabolic similarity of complex dental plaque biofilm microcosms. Appl Environ Microbiol. 2002;68(5779–5783). DOI:10.1128/aem.68.11.5779-5783.2002
  • Thompson J, Pikis A. Metabolism of sugars by genetically diverse species of oral Leptotrichia. Mol Oral Microbiol. 2012;27:34–44.
  • Du Q, Fu M, Zhou Y, et al. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Sci Rep. 2020;10(2961). DOI:10.1038/s41598-020-59733-6
  • Anderson AC, Rothballer M, Altenburger MJ, et al. In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Sci Rep. 2018;8(14202). DOI:10.1038/s41598-018-32544-6
  • Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 2008;42:409–418.
  • Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011;90(294–303). DOI:10.1177/0022034510379602
  • Takahashi N, Yamada T. Acid-induced acid tolerance and acidogenicity of non-mutans streptococci. Oral Microbiol Immunol. 1999;14(43–48). DOI:10.1034/j.1399-302x.1999.140105.x
  • Aimutis WR. Lactose cariogenicity with an emphasis on childhood dental caries. Int Dairy J. 2012;22:152–158.
  • Moynihan PJ, Ferrier S, Blomley S, et al. Acid production from lactulose by dental plaque bacteria. Lett Appl Microbiol. 1998;27:173–177.
  • Rugg-Gunn AJ, Roberts GJ, Wright WG. Effect of human milk on plaque pH in situ and enamel dissolution in vitro compared with bovine milk, lactose, and sucrose. Caries Res. 1985;19(327–334). DOI:10.1159/000260863
  • Hamid MA, Iwaku M, Hoshino E. The metabolism of phenylalanine and leucine by a cell suspension of Eubacterium brachy and the effects of metronidazole on metabolism. Arch Oral Biol. 1994;39(967–972). DOI:10.1016/0003-9969(94)90080-9