1,755
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Profuse diversity and acidogenicity of the candida-biome of deep carious lesions of Severe Early Childhood Caries (S-ECC)

, , , &
Article: 1964277 | Received 03 May 2021, Accepted 05 Jul 2021, Published online: 24 Aug 2021

References

  • Hajishengallis E, Parsaei Y, Klein MI, et al. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol. 2017;32(1):24–12. Epub 2015/ 12/31. PubMed PMID: 26714612; PubMed Central PMCID: PMCPMC4929038.
  • Falsetta ML, Klein MI, Colonne PM, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82(5):1968–1981. PubMed PMID: 24566629
  • Casamassimo PS, Thikkurissy S, Edelstein BL, et al. Beyond the dmft: the human and economic cost of early childhood caries. J Am Dent Assoc. 2009;140(6):650–657. Epub 2009/ 06/06. PubMed PMID: 19491160.
  • Hossain H, Ansari F, Schulz-Weidner N, et al. Clonal identity of Candida albicans in the oral cavity and the gastrointestinal tract of pre-school children. Oral Microbiol Immunol. 2003;18(5):302–308.
  • Baker JL, Bor B, Agnello M, et al. Ecology of the Oral Microbiome: beyond Bacteria. Trends Microbiol. 2017;25(5):362–374. Epub 2017/ 01/17. PubMed PMID: 28089325; PubMed Central PMCID: PMCPMC5687246.
  • Gomez A, Nelson KE. The Oral Microbiome of Children: development, Disease, and Implications Beyond Oral Health. Microb Ecol. 2017;73(2):492–503. Epub 2016/ 09/14. PubMed PMID: 27628595.
  • Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol. 2005;13(12):589–595.
  • Bowen WH. Dental caries – not just holes in teeth! A perspective. Mol Oral Microbiol. 2016;31(3):228–233.
  • Bowen WH, Burne RA, Wu H, et al. Oral Biofilms: pathogens, Matrix, and Polymicrobial Interactions in Microenvironments. Trends Microbiol. 2018;26(3):229–242. Epub 2017/ 11/04. PubMed PMID: 29097091; PubMed Central PMCID: PMCPMC5834367.
  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nature Rev Microbiol. 2018;16(12):745–759.
  • Vanderas AP, Gizani S, Papagiannoulis L. Progression of proximal caries in children with different caries indices: a 4-year radiographic study. Eur Arch Paediatr Dent. 2006;7(3):148–152. Epub 2006/ 12/05. PubMed PMID: 17140544.
  • Allison PJ, Schwartz S. Interproximal contact points and proximal caries in posterior primary teeth. Pediatr Dent. 2003;25(4):334–340. Epub 2003/ 09/19. PubMed PMID: 13678098.
  • Dirksen TR, Little MF, Bibby BG. The pH of carious cavities-II. The pH at different depths in isolated cavities. Arch Oral Biol. 1963 PubMed PMID: 14028031;8:91–97. Epub 1963/ 03/01.
  • Ekstrand KR, Bruun G, Bruun M. Plaque and gingival status as indicators for caries progression on approximal surfaces. PubMed PMID: 9438570. 1998. 32(1):41–45. Caries Res. Epub 1998/ 01/23.
  • Novaes TF, Matos R, Braga MM, et al. Performance of a pen-type laser fluorescence device and conventional methods in detecting approximal caries lesions in primary teeth–in vivo study. Caries Res. 2009;43(1):36–42. Epub 2009/ 01/13. PubMed PMID: 19136830.
  • Marsh PD, Martin MV. Oral Microbiology Textbook ed Lewis MA. Edinburgh, London, NewYork, Oxford: Churchill Livingstone Elsevier;2009 8–23. 2019.
  • Mattos-Graner RO, Klein MI, Smith DJ. Lessons Learned from Clinical Studies: roles of Mutans Streptococci in the Pathogenesis of Dental Caries. Curr Oral Health Rep. 2014;1(1):70–78.
  • Caufield PW, Schön CN, Saraithong P, et al. Oral Lactobacilli and Dental Caries: a Model for Niche Adaptation in Humans. J Dent Res. 2015;94(9Suppl):110S–8S. PubMed PMID: 25758458
  • de Carvalho FG, Silva DS, Hebling J, et al. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol. 2006;51(11):1024–1028. Epub 2006/ 08/08. PubMed PMID: 16890907.
  • Qiu R, Li W, Lin Y, et al. Genotypic diversity and cariogenicity of Candida albicans from children with early childhood caries and caries-free children. BMC Oral Health. 2015;15(1):144.
  • Yang XQ, Zhang Q, Lu LY, et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries. Arch Oral Biol. 2012;57(8):1048–1053.
  • Raja M, Hannan A, Ali K. Association of oral candidal carriage with dental caries in children. Caries Res. 2010;44(3):272–276. Epub 2010/ 06/03. PubMed PMID: 20516688.
  • DdSAV B, Vicente VA, Fraiz FC, et al. Analysis of the in vitro adherence of Streptococcus mutans and Candida albicans. Braz J Microbiol. 2007;38:624–631.
  • Ene IV, Heilmann CJ, Sorgo AG, et al. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics. 2012;12(21):3164–3179. PubMed PMID: 22997008; PubMed Central PMCID: PMCPMC3569869. Epub 2012/ 09/22.
  • Klinke T, Guggenheim B, Klimm W, et al. Dental caries in rats associated with Candida albicans. Caries Res. 2011;45(2):100–106. Epub 2011/ 03/18. PubMed PMID: 21412001.
  • Samaranayake LP, Geddes DA, Weetman DA, et al. Growth and acid production of Candida albicans in carbohydrate supplemented media. Microbios. 1983;37(148):105–115. Epub 1983/ 01/01. PubMed PMID: 6353167.
  • Samaranayake LP, Hughes A, Weetman DA, et al. Growth and acid production of Candida species in human saliva supplemented with glucose. J Oral Pathol. 1986;15(5):251–254. Epub 1986/ 05/01. PubMed PMID: 3091791.
  • Fakhruddin KS, Perera Samaranayake L, Egusa H, et al. Candida biome of severe early childhood caries (S-ECC) and its cariogenic virulence traits. J Oral Microbiol. 2020;12(1):1724484.
  • Ekstrand KR, Martignon S, Ricketts DJ, et al. Detection and activity assessment of primary coronal caries lesions: a methodologic study. Oper Dent. 2007;32(3):225–235. Epub 2007/ 06/09. PubMed PMID: 17555173.
  • Carlén A, Hassan H, The LP. ‘Strip Method’: a Simple Method for Plaque pH Assessment. Caries Res. 2010;44(4):341–344.
  • Trost A, Graf B, Eucker J, et al. Identification of clinically relevant yeasts by PCR/RFLP. J Microbiol Methods. 2004;56(2):201–211. Epub 2004/ 01/28 PubMed PMID: 14744449.
  • Carvalho A, Costa-De-Oliveira S, Martins ML, et al. Multiplex PCR identification of eight clinically relevant Candida species. Med Mycol. 2007;45(7):619–627.
  • Qiong Yang X, Zhang Q, Ying LL, et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries 2012. 1048–1053 p.
  • Essential SL. Microbiology for Dentistry. Vol. 2018. Lakshman Samaranayake. Essential Microbiology for Dentistry. 5th Edition ed. Elsevier; 2018. p. 1–400.
  • Pereira D, Seneviratne CJ, Koga-Ito CY, et al. Is the oral fungal pathogen Candida albicans a carcinogen? Oral Dis. 2018;24(4):518–526. Epub 2017/ 05/18. PubMed PMID: 28513096.
  • Samaranayake LP. Nutritional factors and oral candidosis. J Oral Pathol Med. 1986;15(2):61–65.
  • Sedgley CM, Samaranayake LP, Chan JC, et al. A 4-year longitudinal study of the oral prevalence of enteric gram-negative rods and yeasts in Chinese children. Oral Microbiol Immunol. 1997;12(3):183–188. Epub 1997/ 06/01. PubMed PMID: 9467406.
  • SAMARANAYAKE YH, SAMARANAYAKE LP. Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol. 1994;41(5):295–310.
  • Reichart PA, Samaranayake LP, Samaranayake YH, et al. High oral prevalence of Candida krusei in leprosy patients in northern Thailand. J Clin Microbiol. 2002;40(12):4479–4485. Epub 2002/ 11/28. PubMed PMID: 12454139; PubMed Central PMCID: PMCPMC154582.
  • Yeasts D-SL. Distribution of yeasts in nature. In: AH R, JS H editor. The yeasts, biology of yeasts, Vol. 1st edn.:1. Academic Press, London. 1969;1(1, :79–105.
  • Butler G, Rasmussen MD, Lin MF, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–662. PubMed PMID: 19465905; PubMed Central PMCID: PMCPMC2834264. Epub 2009/ 05/26.
  • Sherrington SL, Sorsby E, Mahtey N, et al. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog. 2017;13(5):e1006403. PubMed PMID: 28542528; PubMed Central PMCID: PMCPMC5456412. Epub 2017/ 05/26.
  • da Costa KR, Ferreira JC, Lavrador MA, et al. Virulence attributes and genetic variability of oral Candida albicans and Candida tropicalis isolates. Mycoses. 2012;55(3):e97–e105. Epub 2011/ 11/01. PubMed PMID: 22035510.
  • Chaves GM, Diniz MG, da Silva-Rocha WP, et al. Species distribution and virulence factors of Candida spp. isolated from the oral cavity of kidney transplant recipients in Brazil. Mycopathologia. 2013;175(3–4):255–263. PubMed PMID: 23539354. Epub 2013/ 03/30.
  • Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol. 2017;8:1927. PubMed PMID: 29081766
  • Marcos-Zambrano LJ, Escribano P, Bouza E, et al. Production of biofilm by Candida and non-Candida spp. isolates causing fungemia: comparison of biomass production and metabolic activity and development of cut-off points. Int J Med Microbiol. 2014;304(8):1192–1198. Epub 2014/ 09/17. PubMed PMID: 25224357.
  • Pannanusorn S, Fernandez V, Romling U. Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses. 2013;56(3):264–272. Epub 2012/ 11/02. PubMed PMID: 23113805.
  • Samaranayake LP, MacFarlane TW, Williamson MI. Comparison of Sabouraud dextrose and Pagano-Levin agar media for detection and isolation of yeasts from oral samples. J Clin Microbiol. 1987;25(1):162–164. Epub 1987/ 01/01. PubMed PMID: 3539988; PubMed Central PMCID: PMCPMC265849.
  • Samaranayake L. Commensal oral Candida in Asian cohorts. Int J Oral Sci. 2009;1(1):2–5. Epub 2009/ 03/01. PubMed PMID: 20690497; PubMed Central PMCID: PMCPMC3470111.
  • Keten HS, Keten D, Ucer H, et al. Prevalence of oral Candida carriage and Candida species among cigarette and maras powder users. Int J Clin Exp Med. 2015;8(6):9847–9854. PubMed PMID: 26309667
  • Bourgeois D, David A, Inquimbert C, et al. Quantification of carious pathogens in the interdental microbiota of young caries-free adults. PLOS ONE. 2017;12(10):e0185804.
  • de Barros PP, Rossoni RD, Freire F, et al. Candida tropicalis affects the virulence profile of Candida albicans: an in vitro and in vivo study. Pathog Dis. 2018;76(2). Epub 2018/ 04/05. DOI:https://doi.org/10.1093/femspd/fty014. PubMed PMID: 29617858.
  • Pathirana RU, McCall AD, Norris HL, et al. Candida Species Adhere to Candida albicans and Benefit From Dual Biofilm Growth. Front Microbiol. 2019;10:1188.
  • Zhang W, Li Y, Lin J, et al. Cariogenicity of Candida albicans of distinct genotypes among 3-5-year-old Uygur children in Kashgar, China- a case-control study. BMC Oral Health. 2018;18(1):203.
  • Klinke T, Kneist S, de Soet JJ, et al. Acid Production by Oral Strains of Candida albicans and Lactobacilli. Caries Res. 2009;43(2):83–91.
  • Bowman BJ, Bowman EJ H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Bio l. 1986;94(2):83–97. Epub 1986/ 01/01. PubMed PMID: 2882028.
  • Vylkova S, Carman AJ, Danhof HA, et al. The Fungal Pathogen Candida albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular pH. mBio. 2011;2(3):e00055–11.
  • Zhou J, Liu L, Improved CJ. ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J Appl Microbiol. 2011;110(1):44–53.
  • Schmidt P, Walker J, Selway L, et al. Proteomic analysis of the pH response in the fungal pathogen Candida glabrata. Proteomics. 2008;8(3):534–544. PubMed PMID: 18186024. Epub 2008/ 01/11.
  • Wei P, Li Z, He P, et al. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem. 2008;49(Pt2):113–120. Epub 2007/ 07/17. PubMed PMID: 17630953.
  • Van Ende M, Wijnants S, Van Dijck P, et al. Signaling in Candida albicans and Candida glabrata. Front Microbiol. 2019;10:99.
  • Takahashi N, Nyvad B. Ecological Hypothesis of Dentin and Root Caries. Caries Res. 2016;50(4):422–431.
  • Abou Neel EA, Aljabo A, Strange A, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine. 2016;11:4743–4763. PubMed PMID: 27695330
  • ZC K, Güriz H, Ağırbaşlı H, et al. Genotype distribution of Candida albicans isolates by 25S intron analysis with regard to invasiveness. Mycoses. 2004;47(11‐12):465–469.
  • Gurbuz M, Kaleli I. Molecular analysis of Candida albicans isolates from clinical specimens. Mycopathologia. 2010;169(4):261–267. Epub 2009/ 12/17. PubMed PMID: 20012366.
  • Millar BC, Moore JE, Xu J, et al. Genotypic subgrouping of clinical isolates of Candida albicans and Candida dubliniensis by 25S intron analysis. Lett Appl Microbiol. 2002;35(2):102–106.
  • Loesche WJ Association of the oral flora with important medical diseases. Curr Opin Periodontol. 1997;4:21–28. Epub 1997/ 01/01. PubMed PMID: 9655017.
  • Andrutis KA, Riggle PJ, Kumamoto CA, et al. Intestinal lesions associated with disseminated candidiasis in an experimental animal model. J Clin Microbiol. 2000;38(6):2317–2323. Epub 2000/ 06/02. PubMed PMID: 10834995; PubMed Central PMCID: PMCPMC86791.
  • Kuboniwa M, Tribble GD, Hendrickson EL, et al. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev Proteomics. 2012;9(3):311–323.
  • Parahitiyawa NB, Jin LJ, Leung WK, et al. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev. 2009;22(1):46–64. PubMed PMID: 19136433