5,686
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Prevotella species as oral residents and infectious agents with potential impact on systemic conditions

ORCID Icon, , ORCID Icon &
Article: 2079814 | Received 13 Feb 2022, Accepted 13 May 2022, Published online: 26 May 2022

References

  • Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–24.
  • Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–5017.
  • Shah HN, Collins DM. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol. 1990;40(2):205–208.
  • Tett A, Pasolli E, Masetti G, et al. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol. 2021;19(9):585–599.
  • Downes J, Dewhirst FE, Tanner ACR, et al. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. Int J Syst Evol Microbiol. 2013;63(Pt_4):1214–1218.
  • Könönen E, Asikainen S, Saarela M, et al. The oral gram-negative anaerobic microflora in young children: longitudinal changes from edentulous to dentate mouth. Oral Microbiol Immunol. 1994;9(3):136–141.
  • Könönen E, Kanervo A, Takala A, et al. Establishment of oral anaerobes during the first year of life. J Dent Res. 1999;78(10):1634–1639.
  • Könönen E. Development of oral bacterial flora in young children. Ann Med. 2000;32(2):107–112.
  • Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–144.
  • Jiao Y, Hasegawa M, Inohara N. The role of oral pathobionts in dysbiosis during periodontitis development. J Dent Res. 2014;93(6):539–546.
  • Kleinstein SE, Nelson KE, Freire M. Inflammatory networks linking oral microbiome with systemic health and disease. J Dent Res. 2020;99(10):1131–1139.
  • Bahrani-Mougeot FK, Paster BJ, Coleman S, et al. Diverse and novel oral bacterial species in blood following dental procedures. J Clin Microbiol. 2008;46(6):2129–2132.
  • Emery DC, Cerajewska TL, Seong J, et al. Comparison of blood bacterial communities in periodontal health and periodontal disease. Front Cell Infect Microbiol. 2021;10:577485.
  • Kitamoto S, Nagao-Kitamoto H, Hein R, et al. The bacterial connection between the oral cavity and the gut diseases. J Dent Res. 2020;99(9):1021–1029.
  • Conrads G, Nagy E, Könönen E. Bacteroides, Porphyromonas, Prevotella, Fusobacterium, and other anaerobic gram-negative rods. In: Carroll KC, et al. editors. Manual of clinical microbiology. 12thed. Washington DC: American Society for Microbiology; 2019:995–1023.
  • Könönen E, Gursoy UK. Oral Prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Front Microbiol. 2022;12:798763.
  • Xu X, He J, Xue J, et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol. 2015;17(3):699–710.
  • Haraldsson G, Holbrook WP, Könönen E. Clonal persistence of oral Fusobacterium nucleatum in infancy. J Dent Res. 2004;83(6):500–504.
  • Könönen E, Wolf J, Mättö J, et al. The Prevotella intermedia group organisms in young children and their mothers as related to maternal periodontal status. J Periodontal Res. 2000;35(6):329–334.
  • Monteiro MF, Altabtbaei K, Kumar PS, et al. Parents with periodontitis impact the subgingival colonization of their offspring. Sci Rep. 2021;11(1):1357.
  • Könönen E, Saarela M, Karjalainen J, et al. Transmission of oral Prevotella melaninogenica between a mother and her young child. Oral Microbiol Immunol. 1994;9(5):310–314.
  • Mättö J, Saarela M, von Troil-Lindén B, et al. Distribution and genetic analysis of oral Prevotella intermedia and Prevotella nigrescens. Oral Microbiol Immunol. 1996;11(2):96–102.
  • Kaan AMM, Kahharova D, Zaura E. Acquisition and establishment of the oral microbiota. Periodontol 2000. 2021;86(1):123–141.
  • Crielaard W, Zaura E, Schuller AA, et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics. 2011;4(1):22.
  • Rotimi VO, Salako NO, Divia M, et al. Prevalence of periodontal bacteria in saliva of Kuwaiti children at different age groups. J Infect Public Health. 2010;3(2):76–82.
  • Ooshima T, Nishiyama N, Hou B, et al. Occurrence of periodontal bacteria in healthy children: a 2-year longitudinal study. Community Dent Oral Epidemiol. 2003;31(6):417–425.
  • Keijser BJ, Zaura E, Huse SM, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87(11):1016–1020.
  • Mager DL, Ximenez-Fyvie LA, Haffajee AD, et al. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol. 2003;30:644–654.
  • Jensen A, Fagö-Olsen H, Sørensen CH, et al. Molecular mapping to species level of the tonsillar crypt microbiota associated with health and recurrent tonsillitis. PLoS One. 2013;8:e56418.
  • Bik EM, Long CD, Armitage GC, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4(8):962–974.
  • Al-Hebshi NN, Abdulhaq A, Albarrag A, et al. Species-level core oral bacteriome identified by 16S rRNA pyrosequencing in a healthy young Arab population. J Oral Microbiol. 2016;8(1):31444.
  • Takeshita T, Matsuo K, Furuta M, et al. Distinct composition of the oral indigenous microbiota in South Korean and Japanese adults. Sci Rep. 2014;4(1):6990.
  • Widyarman AS, Theodorea CF, Udawatte NS, et al. Diversity of oral microbiome of women from urban and rural areas of Indonesia: a pilot study. Front Oral Health. 2021;2. 738306.
  • Karabudak S, Ari O, Durmaz B, et al. Analysis of the effect of smoking on the buccal microbiome using next-generation sequencing technology. J Med Microbiol. 2019;68(8):1148–1158.
  • Könönen E. Pigmented Prevotella species in the periodontally healthy oral cavity. FEMS Immunol Med Microbiol. 1993;6(2–3):201–205.
  • Gürsoy M, Haraldsson G, Hyvönen M, et al. Does the frequency of Prevotella intermedia increase during pregnancy? Oral Microbiol Immunol. 2009;24(4):299–303.
  • Gürsoy M, Harju I, Matomäki J, et al. Performance of MALDI-TOF MS for identification of oral Prevotella species. Anaerobe. 2017;47:89–93.
  • Haran JP, Bradley E, Zeamer AL, et al. Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID. JCI Insight. 2021;6(20):e152346.
  • Könönen E, Paju S, Pussinen PJ, et al. Population-based study of salivary carriage of periodontal pathogens in adults. J Clin Microbiol. 2007;45(8):2446–2451.
  • Hamlet SM, Cullinan MP, Westerman B, et al. Distribution of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia in an Australian population. J Clin Periodontol. 2001;28(12):1163–1171.
  • Takeshita T, Kageyama S, Furuta M, et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci Rep. 2016;6(1):22164.
  • Asakawa M, Takeshita T, Furuta M, et al. Tongue microbiota and oral health status in community-dwelling elderly adults. mSphere. 2018;3(4):e00332–18.
  • Shah HN, Gharbia SE. Biochemical and chemical studies on strains designated Prevotella intermedia and proposal of a new pigmented species, Prevotella nigrescens sp. nov. Int J Syst Bacteriol. 1992;42(4):542–546.
  • Könönen E, Eerola E, Frandsen EV, et al. Phylogenetic characterization and proposal of a new pigmented species to the genus Prevotella: prevotella pallens sp. nov. Int J Syst Bacteriol. 1998;48(1):47–51.
  • Sakamoto M, Suzuki N, Okamoto M. Prevotella aurantiaca sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2010;60(3):500–503.
  • Gharbia SE, Haapasalo M, Shah HN, et al. Characterization of Prevotella intermedia and Prevotella nigrescens isolates from periodontic and endodontic infections. J Periodontol. 1994;65(1):56–61.
  • Pei Z, Bini EJ, Yang L, et al. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U SA. 2004;101(12):4250–4255.
  • Cornejo Ulloa P, Krom BP, van der Veen MH. Sex steroid hormones as a balancing factor in oral host microbiome interactions. Front Cell Infect Microbiol. 2021;11:714229.
  • Kornman KS, Loesche WJ. Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infect Immun. 1982;35(1):256–263.
  • Fteita D, Könönen E, Söderling E, et al. Effect of estradiol on planktonic growth, coaggregation, and biofilm formation of the Prevotella intermedia group bacteria. Anaerobe. 2014;27:7–13.
  • Fteita D, Könönen E, Gürsoy M, et al. Does estradiol have an impact on the dipeptidyl peptidase IV enzyme activity of the Prevotella intermedia group bacteria? Anaerobe. 2015;36:14–18.
  • Fteita D, Musrati AA, Könönen E, et al. Dipeptidyl peptidase IV and quorum sensing signaling in biofilm-related virulence of Prevotella aurantiaca. Anaerobe. 2017;48:152–159.
  • De Lima BR, Nicoloso GF, Fatturi-Parolo CC, et al. Prevotella strains and lactamic resistance gene distribution in different oral environments of children with pulp necrosis. Int Endod J. 2018;51(11):1196–1204.
  • Wilson M. Biological activities of lipopolysaccharides from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci Prog. 1995;78:19–34.
  • Dorn BR, Leung KL, Progulske-Fox A. Invasion of human oral epithelial cells by Prevotella intermedia. Infect Immun. 1998;66(12):6054–6057.
  • Hieke C, Kriebel K, Engelmann R, et al. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci Rep. 2016;15(6):39096.
  • Yamane K, Yamanaka T, Yamamoto N, et al. A novel exopolysaccharide from a clinical isolate of Prevotella nigrescens: purification, chemical characterization and possible role in modifying human leukocyte phagocytosis. Oral Microbiol Immunol. 2005;20(1):1–9.
  • Yamanaka T, Yamane K, Furukawa T, et al. Comparison of the virulence of exopolysaccharide-producing Prevotella intermedia to exopolysaccharide non-producing periodontopathic organisms. BMC Infect Dis. 2011;11(1):228.
  • Takahashi N, Yamada T. Glucose metabolism by Prevotella intermedia and Prevotella nigrescens. Oral Microbiol Immunol. 2000;15(3):188–195.
  • Byrne DP, Wawrzonek K, Jaworska A, et al. Role of the cysteine protease interpain A of Prevotella intermedia in breakdown and release of haem from haemoglobin. Biochem J. 2009;425(1):257–264.
  • Zhang Y, Zhen M, Zhan Y, et al. Population-genomic insights into variation in Prevotella intermedia and Prevotella nigrescens isolates and its association with periodontal disease. Front Cell Infect Microbiol. 2017;21(7):409.
  • Veith PD, Glew MD, Gorasia DG, et al. The Type IX secretion system and its role in bacterial function and pathogenesis. J Dent Res. 2021;10:220345211051599.
  • Leung K, Nesbitt WE, Okamoto M, et al. Identification of a fimbriae-associated haemagglutinin fromPrevotella intermedia. Microb Pathog. 1999;26(3):139–148.
  • Gursoy UK, Könönen E, Uitto VJ. Prevotella intermedia ATCC 25611 targets host cell lamellipodia in epithelial cell adhesion and invasion. Oral Microbiol Immunol. 2009;24(4):304–309.
  • Kumagai Y, Yagishita H, Yajima A, et al. Molecular mechanism for connective tissue destruction by dipeptidyl aminopeptidase IV produced by the Periodontal Pathogen Porphyromonas gingivalis. Infect Immun. 2005;73(5):2655–2664.
  • Yanagisawa M, Kuriyama T, Williams DW, et al. Proteinase activity of Prevotella species associated with oral purulent infection. Curr Microbiol. 2006;52(5):375–378.
  • Yost S, Duran-Pinedo AE. The contribution of Tannerella forsythia dipeptidyl aminopeptidase IV in the breakdown of collagen. Mol Oral Microbiol. 2018;33(6):407–419.
  • Neilands J, Wickström C, Kinnby B, et al. Bacterial profiles and proteolytic activity in peri-implantitis versus healthy sites. Anaerobe. 2015;35:28–34.
  • Jansen HJ, Grenier D, Van der Hoeven JS. Characterization of immunoglobulin G-degrading proteases of Prevotella intermedia and Prevotella nigrescens. Oral Microbiol Immunol. 1995;10(3):138–145.
  • Abbott CA, Baker E, Sutherland GR, et al. Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics. 1994;40(5):331–338.
  • Augustyns K, Bal G, Thonus G, et al. The unique properties of dipeptidyl-peptidase IV (DPP IV/CD26) and the therapeutic potential of DPP IV inhibitors. Curr Med Chem. 1999;6(4):311–327.
  • Nemoto E, Sugawara S, Takada H, et al. Increase of CD26/dipeptidyl peptidase IV expression on human gingival fibroblasts upon stimulation with cytokines and bacterial components. Infect Immun. 1999;67(12):6225–6233.
  • Uematsu T, Tanaka H, Yamaoka M, et al. Effects of oral squamous cell carcinoma-derived TGF-beta1 on CD26/DPPIV expression in T cells. Anticancer Res. 2004;24(2B):619–624.
  • Metzemaekers M, Van Damme J, Mortier A, et al. Regulation of chemokine activity - A focus on the role of dipeptidyl peptidase IV/CD26. Front Immunol. 2016;11(7):483.
  • Deacon CF. Metabolism of GIP and the contribution of GIP to the glucose-lowering properties of DPP-4 inhibitors. Peptides. 2020;125:170196.
  • Bassendine MF, Bridge SH, McCaughan GW, et al. COVID-19 and comorbidities: a role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes. 2020;12(9):649–658.
  • Posadas-Sánchez R, Sánchez-Muñoz F, Guzmán-Martín CA, et al. Dipeptidylpeptidase-4 levels and DPP4 gene polymorphisms in patients with COVID-19. Association with disease and with severity. Life Sci. 2021;1(276):119410.
  • Ohara-Nemoto Y, Nakasato M, Shimoyama Y, et al. Degradation of incretins and modulation of blood glucose levels by periodontopathic bacterial dipeptidyl peptidase 4. Infect Immun. 2017;18(85):e00277–17.
  • Kondo Y, Sato K, Nagano K, et al. Involvement of PorK, a component of the type IX secretion system, in Prevotella melaninogenica pathogenicity. Microbiol Immunol. 2018;62(9):554–566.
  • Hrv R, Devaki R, Kandi V. Comparison of hemagglutination and hemolytic activity of various bacterial clinical isolates against different human blood groups. Cureus. 2016;11(8):e489.
  • Okamoto M, Maeda N, Kondo K, et al. Hemolytic and hemagglutinating activities of Prevotella intermedia and Prevotella nigrescens. FEMS Microbiol Lett. 1999;15(178):299–304.
  • Silva TA, Noronha FS, de Macêdo Farias L, et al. In vitro activation of the hemolysin in Prevotella nigrescens ATCC 33563 and Prevotella intermedia ATCC 25611. Res Microbiol. 2004;155(1):31–38.
  • Byrne DP, Potempa J, Olczak T, et al. Evidence of mutualism between two periodontal pathogens: co-operative haem acquisition by the HmuY haemophore of Porphyromonas gingivalis and the cysteine protease interpain A (InpA) of Prevotella intermedia. Mol Oral Microbiol. 2013;28(3):219–229.
  • Smalley JW, Silver J, Birss AJ, et al. The haem pigment of the oral anaerobes Prevotella nigrescens and Prevotella intermedia is composed of iron (III) protoporphyrin IX in the monomeric form. Microbiology (Reading). 2003;149(7):1711–1718.
  • Byrne DP, Manandhar SP, Potempa J, et al. Breakdown of albumin and haemalbumin by the cysteine protease interpain A, an albuminase of Prevotella intermedia. BMC Microbiol. 2015;15(1):185.
  • de Lillo A, Fierro JF. Identification of a lactoferrin-binding protein in Prevotella nigrescens. FEMS Microbiol Lett. 1997;150(1):61–64.
  • Duchesne P, Grenier D, Mayrand D. Binding and utilization of human transferrin by Prevotella nigrescens. Infect Immun. 1999;67(2):576–580.
  • Haraldsson G, Meurman JH, Könönen E, et al. Properties of hemagglutination by Prevotella melaninogenica. Anaerobe. 2005;11(5):285–289.
  • Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011;2(5):435–444.
  • Bradshaw DJ, Marsh PD, Watson GK, et al. Role of Fusobacterium nucleatum and coaggregation in Anaerobe survival in Planktonic and biofilm oral microbial communities during Aeration. Infect Immun. 1998;66(10):4729–4732.
  • Sanz M, Beighton D, Curtis MA, et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J Clin Periodontol. 2017;44(Suppl 18):S5–S11.
  • Takahashi N. Oral microbiome metabolism: from “Who are they?” to “What are they doing?”. J Dent Res. 2015;94(12):1628–1637.
  • Saito K, Takahashi N, Horiuchi H, et al. Effects of glucose on formation of cytotoxic end-products and proteolytic activity of Prevotella intermedia, Prevotella nigrescens and Porphyromonas gingivalis. J Periodontal Res. 2001;36(6):355–360.
  • Zijnge V, van Leeuwen MB, Degener JE, et al. Oral biofilm architecture on natural teeth. PLoS One. 2010;5(2):e9321.
  • Albaghdadi SZ, Altaher JB, Drobiova H, et al. In vitro characterization of biofilm formation in Prevotella species. Front Oral Health. 2021; 2: 724194.
  • Bamashmous S, Kotsakis GA, Kerns KA, et al. Human variation in gingival inflammation. Proc Natl Acad Sci U S A. 2021;118(27):e2012578118.
  • Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905.
  • Takahashi N. Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol. 2003;18(2):109–113.
  • Okuda T, Kokubu E, Kawana T, et al. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe. 2012;18(1):110–116.
  • Sato T, Nakazawa F. Coaggregation between Prevotella oris and Porphyromonas gingivalis. J Microbiol Immunol Infect. 2014;47(3):182–186.
  • Barbosa GM, Colombo AV, Rodrigues PH, et al. Intraspecies variability affects heterotypic biofilms of Porphyromonas gingivalis and Prevotella intermedia: evidences of strain-dependence biofilm modulation by physical contact and by released soluble factors. PLoS One. 2015;10(9):e0138687.
  • Kurita-Ochiai T, Fukushima K, Ochiai K. Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J Dent Res. 1995;74(7):1367–1373.
  • Kurita-Ochiai T, Ochiai K, Fukushima K. Volatile fatty acid, metabolic by-product of periodontopathic bacteria, induces apoptosis in WEHI 231 and RAJI B lymphoma cells and splenic B cells. Infect Immun. 1998;66(6):2587–2594.
  • Terao N, Saito S, Hayakawa M, et al. Suppressive effect of soluble factor(s) derived from Prevotella loescheii ATCC 15930 on proliferation of human lymphocytes. Oral Microbiol Immunol. 1992;7(4):230–234.
  • Silva VL, Carvalho MA, Nicoli JR, et al. Aerotolerance of human clinical isolates of Prevotella spp. J Appl Microbiol. 2003;94(4):701–707.
  • Hillmann G, Dogan S, Geurtsen W. Histopathological investigation of gingival tissue from patients with rapidly progressive periodontitis. J Periodontol. 1998;69(2):195–208.
  • Ji S, Kim Y, Min BM, et al. Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria. J Periodontal Res. 2007;42(6):503–510.
  • Sugiyama A, Uehara A, Iki K, et al. Activation of human gingival epithelial cells by cell-surface components of black-pigmented bacteria: augmentation of production of interleukin-8, granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor and expression of intercellular adhesion molecule. J Med Microbiol. 2002;51(1):27–33.
  • Guan SM, Fu SM, He JJ, et al. Prevotella intermedia induces Prostaglandin E 2 via multiple signaling Pathways. J Dent Res. 2011;90(1):121–127.
  • Chung YH, Chang EJ, Kim SJ, et al. Lipopolysaccharide from Prevotella nigrescens stimulates osteoclastogenesis in cocultures of bone marrow mononuclear cells and primary osteoblasts. J Periodontal Res. 2006;41(4):288–296.
  • Botero TM, Mantellini MG, Song W, et al. Effect of lipopolysaccharides on vascular endothelial growth factor expression on mouse pulp cells and macrophages. Eur J Oral Sci. 2003;111(3):228–234.
  • de Aquino SG, Abdollahi-Roodsaz S, Koenders MI, et al. Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response. J Immunol. 2014;192(9):4103–4111.
  • Tokuda M, Nagaoka S, Torii M. Interleukin-10 receptor expression in human dental pulp cells in response to lipopolysaccharide from Prevotella intermedia. J Endod. 2002;28(3):177–180.
  • Kubo K, Kamada T, Okamoto H, et al. Lipopolysaccharide increases cell surface-associated fibronectin in fibroblasts in vitro. Oral Microbiol Immunol. 1996;11(1):29–34.
  • Leung KP, Torres BA. Prevotella intermedia Stimulates Expansion of Vβ-Specific CD4 + T Cells. Infect Immun. 2000;68(9):5420–5424.
  • Slots J. Subgingival microflora and periodontal disease. J Clin Periodontol. 1979;6(5):351–382.
  • Zambon JJ, Reynolds HS, Slots J. Black-pigmented Bacteroides spp. in the human oral cavity. Infect Immun. 1981;32(1):198–203.
  • Loesche WJ, Syed SA, Laughon BE, et al. The bacteriology of acute necrotizing ulcerative gingivitis. J Periodontol. 1982;53(4):223–230.
  • Maeda N, Okamoto M, Kondo K, et al. Incidence of Prevotella intermedia and Prevotella nigrescens in periodontal health and disease. Microbiol Immunol. 1998;42(9):583–589.
  • Gürsoy M, Gürsoy UK, Sorsa T, et al. High salivary estrogen and risk of developing pregnancy gingivitis. J Periodontol. 2013;84(9):1281–1289.
  • Balan P, Chong YS, Umashankar S, et al. Keystone species in pregnancy gingivitis: a snapshot of oral microbiome during pregnancy and postpartum period. Front Microbiol. 2018;9:2360.
  • Kistler JO, Booth V, Bradshaw DJ, et al. Bacterial community development in experimental gingivitis. PLoS One. 2013;8(8):e71227.
  • Nadkarni MA, Chhour KL, Browne GV, et al. Age-dependent changes in Porphyromonas gingivalis and Prevotella species/phylotypes in healthy gingiva and inflamed/diseased sub-gingival sites. Clin Oral Investig. 2015;19(4):911–919.
  • Nadkarni MA, Browne GV, Chhour KL, et al. Pattern of distribution of Prevotella species/phylotypes associated with healthy gingiva and periodontal disease. Eur J Clin Microbiol Infect Dis. 2012;31(11):2989–2999.
  • Kageyama S, Takeshita T, Asakawa M, et al. Relative abundance of total subgingival plaque-specific bacteria in salivary microbiota reflects the overall periodontal condition in patients with periodontitis. PLoS One. 2017;12(4):e0174782.
  • Sun X, Li M, Xia L, et al. Alteration of salivary microbiome in periodontitis with or without type-2 diabetes mellitus and metformin treatment. Sci Rep. 2020;10(1):15363.
  • Sun B, Liu B, Gao X, et al. Metagenomic analysis of saliva reveals disease-associated microbiotas in patients with periodontitis and Crohn’s disease-associated periodontitis. Front Cell Infect Microbiol. 2021;11:719411.
  • Diao J, Yuan C, Tong P, et al. Potential roles of the free salivary microbiome dysbiosis in periodontal diseases. Front Cell Infect Microbiol. 2021;11:711282.
  • Johnston W, Rosier BT, Artacho A, et al. Mechanical biofilm disruption causes microbial and immunological shifts in periodontitis patients. Sci Rep. 2021;11(1):9796.
  • Dabdoub SM, Tsigarida AA, Kumar PS. Patient-specific analysis of periodontal and peri-implant microbiomes. J Dent Res. 2013;92(12 Suppl):168S–175S.
  • Tsigarida AA, Dabdoub SM, Nagaraja HN, et al. The influence of smoking on the peri-implant microbiome. J Dent Res. 2015;94(9):1202–1217.
  • Maruyama N, Maruyama F, Takeuchi Y, et al. Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci Rep. 2014;4(1):6602.
  • Komatsu K, Shiba T, Takeuchi Y, et al. Discriminating microbial community structure between peri-Implantitis and periodontitis with integrated metagenomic, metatranscriptomic, and network analysis. Front Cell Infect Microbiol. 2020;10:596490.
  • Grischke J, Szafrański SP, Muthukumarasamy U, et al. Removable denture is a risk indicator for peri-implantitis and facilitates expansion of specific periodontopathogens: a cross-sectional study. BMC Oral Health. 2021;21(1):173.
  • Polymeri A, van der Horst J, Buijs MJ, et al. Submucosal microbiome of peri-implant sites: a cross-sectional study. J Clin Periodontol. 2021;48(9):1228–1239.
  • Yu XL, Chan Y, Zhuang L, et al. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease. Clin Oral Implants Res. 2019;30(8):760–776.
  • Tanner AC, RL K Jr, Holgerson PL, et al. Microbiota of severe early childhood caries before and after therapy. J Dent Res. 2011;90(11):1298–1305.
  • Kianoush N, Adler CJ, Nguyen KA, et al. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One. 2014;9(3):e92940.
  • Schulze-Schweifing K, Banerjee A, Wade WG. Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrosequencing for the characterization of the dentine caries-associated microbiome. Front Cell Infect Microbiol. 2014;4:164.
  • Hurley E, Barrett MPJ, Kinirons M, et al. Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health. 2019;19(1):13.
  • Kressirer CA, Chen T, Lake Harriman K, et al. Functional profiles of coronal and dentin caries in children. J Oral Microbiol. 2018;10(1):1495976.
  • Zhang L, Sun T, Zhu P, et al. Quantitative analysis of salivary oral bacteria associated with severe early childhood caries and construction of caries assessment model. Sci Rep. 2020b;10(1):6365.
  • Qudeimat MA, Alyahya A, Karched M, et al. Dental plaque microbiota profiles of children with caries-free and caries-active dentition. J Dent. 2021;104:103539.
  • Johansson I, Witkowska E, Kaveh B, et al. The microbiome in populations with a low and high prevalence of caries. J Dent Res. 2016;95(1):80–86.
  • Preza D, Olsen I, Aas JA, et al. Bacterial profiles of root caries in elderly patients. J Clin Microbiol. 2008;46(6):2015–2021.
  • Chen L, Qin B, Du M, et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health. PLoS One. 2015;10(2):e0117064.
  • Tavares WL, Neves de Brito LC, Teles RP, et al. Microbiota of deciduous endodontic infections analysed by MDA and checkerboard DNA-DNA hybridization. Int Endod J. 2011;44(3):225–235.
  • de Brito LCN, Doolittle-Hall J, Lee C-T, et al. The apical root canal system microbial communities determined by next-generation sequencing. Sci Rep. 2020;10(1):10932.
  • Rôças IN, JF S Jr. Prevalence of new candidate pathogens Prevotella baroniae, Prevotella multisaccharivorax and as-yet-uncultivated Bacteroidetes clone X083 in primary endodontic infections. J Endod. 2009;35(10):1359–1362.
  • Nardello LCL, Amado PPP, Franco DC, et al. Next-generation sequencing to assess potentially active bacteria in endodontic infections. J Endod. 2020;46(8):1105–1112.
  • Tek M, Metin M, Sener I, et al. The predominant bacteria isolated from radicular cysts. Head Face Med. 2013;9(1):25.
  • Xia T, Baumgartner JC, David LL. Isolation and identification of Prevotella tannerae from endodontic infections. Oral Microbiol Immunol. 2000;15(4):273–275.
  • Baumgartner JC, JF S Jr, Xia T, et al. Geographical differences in bacteria detected in endodontic infections using polymerase chain reaction. J Endod. 2004;30(3):141–144.
  • JF S Jr, Rôças IN. The microbiota of acute apical abscesses. J Dent Res. 2009;88(1):61–65.
  • George N, Flamiatos E, Kawasaki K, et al. Oral microbiota species in acute apical endodontic abscesses. J Oral Microbiol. 2016;8(1):30989.
  • Rôças IN, JF S Jr. Frequency and levels of candidate endodontic pathogens in acute apical abscesses as compared to asymptomatic apical periodontitis. PLoS One. 2018;13(1):e0190469.
  • Chen J, Miao X, Xu M, et al. Intra-genomic heterogeneity in 16S rRNA genes in strictly anaerobic clinical isolates from periodontal abscesses. PLoS One. 2015;10(6):e0130265.
  • Chen J, Wu X, Zhu D, et al. Microbiota in human periodontal abscess revealed by 16S rDNA sequencing. Front Microbiol. 2019;10:1723.
  • Böttger S, Zechel-Gran S, Schmermund D, et al. Microbiome of odontogenic abscesses. Microorganisms. 2021;9(6):1307.
  • Riggio MP, Aga H, Murray CA, et al. Identification of bacteria associated with spreading odontogenic infections by 16S rRNA gene sequencing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(5):610–617.
  • Fihman V, Raskine L, Petitpas F, et al. Cervical necrotizing fasciitis: 8-years’ experience of microbiology. Eur J Clin Microbiol Infect Dis. 2008;27(8):691–695.
  • Shi H, Yang Z, Li H, et al. Efficacy of needle aspiration in patients with oral-maxillofacial abscesses: a retrospective study of 15 consecutive patients. Am J Otolaryngol. 2022;43(1):103216.
  • Aguilar-Durán L, Figueiredo R, Seminago R, et al. A metagenomic study of patients with alveolar osteitis after tooth extraction. A preliminary case-control study. Clin Oral Investig. 2019;23(11):4163–4172.
  • Zheng SW, Xu P, Cai LT, et al. The presence of Prevotella melaninogenica within tissue and preliminary study on its role in the pathogenesis of oral lichen planus. Oral Dis. 2021 Mar 29.
  • Yang Z, Cui Q, An R, et al. Comparison of microbiomes in ulcerative and normal mucosa of recurrent aphthous stomatitis (RAS)-affected patients. BMC Oral Health. 2020;20(1):128.
  • Gopinath D, Menon RK, Wie CC, et al. Salivary bacterial shifts in oral leukoplakia resemble the dysbiotic oral cancer bacteriome. J Oral Microbiol. 2020;13(1):1857998.
  • Rusthen S, Kristoffersen AK, Young A, et al. Dysbiotic salivary microbiota in dry mouth and primary Sjögren’s syndrome patients. PLoS One. 2019;14(6):e0218319.
  • Alam J, Lee A, Lee J, et al. Dysbiotic oral microbiota and infected salivary glands in Sjögren’s syndrome. PLoS One. 2020;15(3):e0230667.
  • Zhang Y, Zhu C, Feng X, et al. Microbiome variations in preschool children with halitosis. Oral Dis. 2021;27(4):1059–1068.
  • Ren W, Xun Z, Wang Z, et al. Tongue coating and the salivary microbial communities vary in children with halitosis. Sci Rep. 2016;6(1):24481.
  • Riggio MP, Lennon A, Rolph HJ, et al. Molecular identification of bacteria on the tongue dorsum of subjects with and without halitosis. Oral Dis. 2008;14(3):251–258.
  • Ye W, Zhang Y, He M, et al. Relationship of tongue coating microbiome on volatile sulfur compounds in healthy and halitosis adults. J Breath Res. 2020;14(1):016005.
  • Jo JK, Seo SH, Park SE, et al. Identification of salivary microorganisms and metabolites associated with halitosis. Metabolites. 2021;11(6):362.
  • Karpinski TM. Role of oral microbiota in cancer development. Microorganisms. 2019;7(1):20.
  • Teles FRF, Alawi F, Castilho RM, et al. Association or causation? Exploring the oral microbiome and cancer links. J Dent Res. 2020;99(13):1411–1424.
  • Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92.
  • Hsiao JR, Chang CC, Lee WT, et al. The interplay between oral microbiome, lifestyle factors and genetic polymorphisms in the risk of oral squamous cell carcinoma. Carcinogenesis. 2018;39(6):778–787.
  • Yang K, Wang Y, Zhang S, et al. Oral microbiota analysis of tissue pairs and saliva samples from patients with oral squamous cell carcinoma - a pilot study. Front Microbiol. 2021;12:719601.
  • Gopinath D, Menon RK, Wie CC, et al. Differences in the bacteriome of swab, saliva, and tissue biopsies in oral cancer. Sci Rep. 2021;11(1):1181.
  • Perera M, Al-Hebshi NN, Perera I, et al. Inflammatory bacteriome and oral squamous cell carcinoma. J Dent Res. 2018;97(6):725–732.
  • Zhang L, Liu Y, Zheng HJ, et al. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2020;9:476.
  • Chen MY, Chen JW, Wu LW, et al. Carcinogenesis of male oral submucous fibrosis alters salivary microbiomes. J Dent Res. 2021;100(4):397–405.
  • Rai AK, Panda M, Das AK, et al. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch Microbiol. 2021;203(1):137–152.
  • Kageyama S, Nagao Y, Ma J, et al. Compositional shift of oral microbiota following surgical resection of tongue cancer. Front Cell Infect Microbiol. 2020;10:600884.
  • De Martin A, Lütge M, Stanossek Y, et al. Distinct microbial communities colonize tonsillar squamous cell carcinoma. Oncoimmunology. 2021;10(1):1945202.
  • Panda M, Rai AK, Rahman T, et al. Alterations of salivary microbial community associated with oropharyngeal and hypopharyngeal squamous cell carcinoma patients. Arch Microbiol. 2020;202(4):785–805.
  • Gong H, Shi Y, Zhou X, et al. Microbiota in the throat and risk factors for laryngeal carcinoma. Appl Environ Microbiol. 2014;80(23):7356–7363.
  • Dong Z, Zhang C, Zhao Q, et al. Alterations of bacterial communities of vocal cord mucous membrane increases the risk for glottic laryngeal squamous cell carcinoma. J Cancer. 2021;12(13):4049–4063.
  • Hsueh C-Y, Gong H, Cong N, et al. Throat microbial community structure and functional changes in postsurgery laryngeal carcinoma patients. Appl Environ Microbiol. 2020;86(24):e01849–20.
  • Al Masalma M, Lonjon M, Richet H, et al. Metagenomic analysis of brain abscesses identifies specific bacterial associations. Clin Infect Dis. 2012;54(2):202–210.
  • Kommedal Ø, Wilhelmsen MT, Skrede S, et al. Massive parallel sequencing provides new perspectives on bacterial brain abscesses. J Clin Microbiol. 2014;52(6):1990–1997.
  • Dyrhovden R, Nygaard RM, Patel R, et al. The bacterial aetiology of pleural empyema. A descriptive and comparative metagenomic study. Clin Microbiol Infect. 2019;25(8):981–986.
  • Fernández-Canigia L, Cejas D, Gutkind G, et al. Detection and genetic characterization of beta-lactamases in Prevotella intermedia and Prevotella nigrescens isolated from oral cavity infections and peritonsillar abscesses. Anaerobe. 2015;33:8–13.
  • Klug TE, Greve T, Hentze M. Complications of peritonsillar abscess. Ann Clin Microbiol Antimicrob. 2020;19(1):32.
  • Bancescu G, Didilescu A, Bancescu A, et al. Antibiotic susceptibility of 33 Prevotella strains isolated from Romanian patients with abscesses in head and neck spaces. Anaerobe. 2015;35:41–44.
  • Cobo F, Guillot V, Navarro-Marí JM. Breast abscesses caused by anaerobic microorganisms: clinical and microbiological characteristics. Antibiotics. 2020;9(6):341.
  • Cobo F, Rodríguez-Granger J, Sampedro A, et al. Infected breast cyst due to Prevotella buccae resistant to metronidazole. Anaerobe. 2017;48:177–178.
  • Guet-Revillet H, Jais JP, Ungeheuer MN, et al. The microbiological landscape of anaerobic infections in hidradenitis suppurativa: a prospective metagenomic study. Clin Infect Dis. 2017;65(2):282–291.
  • Ring HC, Sigsgaard V, Thorsen J, et al. The microbiome of tunnels in hidradenitis suppurativa patients. J Eur Acad Dermatol Venereol. 2019;33(9):1775–1780.
  • Zou M, Cai Y, Hu P, et al. Analysis of the composition and functions of the microbiome in diabetic foot osteomyelitis based on 16S rRNA and metagenome sequencing technology. Diabetes. 2020;69(11):2423–2439.
  • Sakamoto M, Ohkusu K, Masaki T, et al. Prevotella pleuritidis sp. nov., isolated from pleural fluid. Int J Syst Evol Microbiol. 2007;57(8):1725–1728.
  • Jayasimhan D, Wu L, Huggan P. Fusobacterial liver abscess: a case report and review of the literature. BMC Infect Dis. 2017;17(1):440.
  • Asif AA, Roy M, Ahmad S. Rare case of Prevotella pleuritidis lung abscess. BMJ Case Rep. 2020;13(9):e235960.
  • Al Bataineh MT, Dash NR, Elkhazendar M, et al. Revealing oral microbiota composition and functionality associated with heavy cigarette smoking. J Transl Med. 2020;18(1):421.
  • Esberg A, Johansson L, Johansson I, et al. Oral microbiota identifies patients in early onset rheumatoid arthritis. Microorganisms. 2021;9(8):1657.
  • Corrêa JD, Calderaro DC, Ferreira GA, et al. Subgingival microbiota dysbiosis in systemic lupus erythematosus: association with periodontal status. Microbiome. 2017;5(1):34.
  • Alauzet C, Mory F, Carlier JP, et al. Prevotella nanceiensis sp. nov., isolated from human clinical samples. Int J Syst Evol Microbiol. 2007;57(10):2216–2220.
  • Ari O, Karabudak S, Kalcioglu MT, et al. The bacteriome of otitis media with effusion: does it originate from the adenoid? Int J Pediatr Otorhinolaryngol. 2019;126:109624.
  • Francavilla R, Ercolini D, Piccolo M, et al. Salivary microbiota and metabolome associated with celiac disease. Appl Environ Microbiol. 2014;80(11):3416–3425.
  • Buhl M, Marschal M. Prevotella vespertina sp. nov., isolated from an abscess of a hospital patient. Int J Syst Evol Microbiol. 2020;70(8):4576–4582.
  • Buhl MEJ, Meier-Kolthoff JP, Marschal M. Prevotella illustrans sp. nov., derived from human oropharyngeal abscess puncture fluid. Int J Syst Evol Microbiol. 2021;71(12).
  • Downes J, Sutcliffe IC, Hofstad T, et al. Prevotella bergensis sp. nov., isolated from human infections. Int J Syst Evol Microbiol. 2006;56(3):609–612.
  • Glazunova OO, Launay T, Raoult D, et al. Prevotella timonensis sp. nov., isolated from a human breast abscess. Int J Syst Evol Microbiol. 2007;57(4):883–886.
  • Aberkane S, Pradel B, Dumont Y, et al. Clinical sources and antimicrobial susceptibility of Prevotella timonensis at the university hospital of Montpellier, France. Anaerobe. 2018;50:19–21.
  • Scher JU, Ubeda C, Equinda M, et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 2012;64(10):3083–3094.
  • Kroese JM, Brandt BW, Buijs MJ, et al. Differences in the oral microbiome in patients with early rheumatoid arthritis and individuals at risk of rheumatoid arthritis compared to healthy individuals. Arthritis Rheumatol. 2021;73(11):1986–1993.
  • Corrêa JD, Fernandes GR, Calderaro DC, et al. Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. Sci Rep. 2019;9(1):8379.
  • Chen B, Zhao Y, Li S, et al. Variations in oral microbiome profiles in rheumatoid arthritis and osteoarthritis with potential biomarkers for arthritis screening. Sci Rep. 2018;8(1):17126.
  • Lehenaff R, Tamashiro R, Nascimento MM, et al. Subgingival microbiome of deep and shallow periodontal sites in patients with rheumatoid arthritis: a pilot study. BMC Oral Health. 2021;21(1):248.
  • Sparks Stein P, Steffen MJ, Smith C, et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimers Dement. 2012;8(3):196–203.
  • Beydoun MA, Beydoun HA, Hossain S, et al. Clinical and bacterial markers of periodontitis and their association with incident all-cause and Alzheimer’s disease dementia in a large national survey. J Alzheimers Dis. 2020;75(1):157–172.
  • Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis. 2002;35(Suppl 1):S6–S16.
  • Finegold SM. State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe. 2011;17:367–368.
  • Qiao Y, Wu M, Feng Y, et al. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci Rep. 2018;8(1):1597.
  • Abdulhaq A, Halboub E, Homeida HE, et al. Tongue microbiome in children with autism spectrum disorder. J Oral Microbiol. 2021;13(1):1936434.
  • Wingfield B, Lapsley C, McDowell A, et al. Variations in the oral microbiome are associated with depression in young adults. Sci Rep. 2021;11(1):15009.
  • Yolken R, Prandovszky E, Severance EG, et al. The oropharyngeal microbiome is altered in individuals with schizophrenia and mania. Schizophr Res. 2021;234:51–57.
  • Chang Y, Woo HG, Jeong JH, et al. Microbiota dysbiosis and functional outcome in acute ischemic stroke patients. Sci Rep. 2021;11(1):10977.
  • Pyysalo MJ, Pyysalo LM, Pessi T, et al. Bacterial DNA findings in ruptured and unruptured intracranial aneurysms. Acta Odontol Scand. 2016;74(4):315–320.
  • Park HR, Chang J, Kim S, et al. First case of intracranial mycotic aneurysm caused by Prevotella intermedia associated with chronic sinusitis in a Korean adult. Case Rep Neurol. 2020;12(1):121–126.
  • Sandoe JA, Struthers JK, Brazier JS. Subdural empyema caused by Prevotella loescheii with reduced susceptibility to metronidazole. J Antimicrob Chemother. 2001;47(3):366–367.
  • Piccolo M, De Angelis M, Lauriero G, et al. Salivary microbiota associated with immunoglobulin A nephropathy. Microb Ecol. 2015;70:557–565.
  • Downes J, Sutcliffe I, Tanner ACR, et al. Prevotella marshii sp. nov. and Prevotella baroniae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2005;55(4):1551–1555.
  • Böttger S, Zechel-Gran S, Schmermund D, et al. Clinical relevance of the microbiome in odontogenic abscesses. Biology (Basel). 2021;10(9):916.
  • Boyanova L, Kolarov R, Gergova G, et al. Trends in antibiotic resistance in Prevotella species from patients of the University Hospital of Maxillofacial Surgery, Sofia, Bulgaria, in 2003–2009. Anaerobe. 2010;16(5):489–492.
  • van Winkelhoff AJ, Winkel EG, Barendregt D, et al. Beta-lactamase producing bacteria in adult periodontitis. J Clin Periodontol. 1997;24(8):538–543.
  • Lareyre F, Cohen C, Declemy S, et al. A fatal aortic arch rupture due to descending necrotizing mediastinitis in a 24-year-old woman. Vasc Endovascular Surg. 2017;51(6):408–412.
  • Montagner F, Jacinto RC, Correa Signoretti FG, et al. Beta-lactamic resistance profiles in Porphyromonas, Prevotella, and Parvimonas species isolated from acute endodontic infections. J Endod. 2014;40(3):339–344.
  • Willems A, Collins MD. 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapasalo et al.) are genealogically highly related and are members of the genus Prevotella: emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov. Int J Syst Bacteriol. 1995;45(4):832–836.
  • Zheng H, Xu L, Wang Z, et al. Subgingival microbiome in patients with healthy and ailing dental implants. Sci Rep. 2015;5(1):10948.
  • Moore LV, Johnson JL, Moore WE. Descriptions of Prevotella tannerae sp. nov. and Prevotella enoeca sp. nov. from the human gingival crevice and emendation of the description of Prevotella zoogleoformans. Int J Syst Bacteriol. 1994;44(4):599–602.
  • Li X, Du H, Song Z, et al. Polymicrobial anaerobic meningitis detected by next-generation sequencing: case report and review of the literature. Front Med (Lausanne). 2022;9:840910.
  • Downes J, Wade WG. Prevotella fusca sp. nov. and Prevotella scopos sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2011;61(4):854–858.
  • Downes J, Hooper SJ, Wilson MJ, et al. Prevotella histicola sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2008;58(8):1788–1791.
  • Pietrobon G, Tagliabue M, Stringa LM, et al. Leukoplakia in the oral cavity and oral microbiota: a comprehensive review. Cancers (Basel). 2021;13(17):4439.
  • Marqués A F, Maestre Vera JR, Mateo Maestre M, et al. Septic arthritis of the knee due to Prevotella loescheii following tooth extraction. Med Oral Patol Oral Cir Bucal. 2008;13(8):E505–507.
  • Steingruber I, Bach CM, Czermak B, et al. Infection of a total Hip arthroplasty with Prevotella loescheii. Clin Orthop Relat Res. 2004;418:222–224.
  • Downes J, Sutcliffe IC, Booth V, et al. Prevotella maculosa sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2007;57(12):2936–2939.
  • Hsiao WW, Li KL, Liu Z, et al. Microbial transformation from normal oral microbiota to acute endodontic infections. BMC Genomics. 2012;13(1):345.
  • Downes J, Liu M, Könönen E, et al. Prevotella micans sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2009;59(4):771–774.
  • Sakamoto M, Huang Y, Umeda M, et al. Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol. 2005;55(2):815–819.
  • Buonavoglia A, Lanave G, Camero M, et al. Next-generation sequencing analysis of root canal microbiota associated with a severe endodontic-periodontal lesion. Diagnostics (Basel). 2021;11(8):1461.
  • Sakamoto M, Umeda M, Ishikawa I, et al. Prevotella multisaccharivorax sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol. 2005;55(5):1839–1843.
  • Downes J, Tanner ACR, Dewhirst FE, et al. Prevotella saccharolytica sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2010;60:2458–2461.
  • Sakamoto M, Suzuki M, Huang Y, et al. Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol. 2004;54(3):877–883.