3,479
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review

, , &
Article: 2131117 | Received 04 Jul 2022, Accepted 27 Sep 2022, Published online: 02 Oct 2022

References

  • Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea–a review. J Am Coll Nutr. 2006 Apr;25(2):79–14.
  • Mak JC. Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol. 2012 Mar;39(3):265–273.
  • Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol. 2014 Aug;20(5):434.
  • Botten D, Fugallo G, Fraternali F, et al. Structural properties of green tea catechins. J Phys Chem B. 2015 Oct 8;119(40):12860–12867.
  • Taylor PW, Hamilton-Miller JM, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci Technol Bulletin. 2005;2:71–81.
  • Kochman J, Jakubczyk K, Antoniewicz J, et al. Chemical composition of matcha green tea: a review. Molecules. 2020 Dec 27;26(1):85.
  • Narotzki B, Reznick AZ, Aizenbud D, et al. Green tea: a promising natural product in oral health. Arch Oral Biol. 2012 May;57(5):429–435.
  • Zhao Z, Feng M, Wan J, et al. Research progress of epigallocatechin-3-gallate (EGCG) on anti-pathogenic microbes and immune regulation activities. Food Funct. 2021 Oct 19;12(20):9607–9619.
  • Mc Naught J. On the action of cold or lukewarm tea on Bacillus typhosus. J R Army Med Corps. 1906;7:372–373.
  • Steinmann J, Buer J, Pietschmann T, et al. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013 Mar;168(5):1059–1073.
  • Reygaert WC. Green tea catechins: their use in treating and preventing infectious diseases. Biomed Res Int. 2018 Jul;17(2018):9105261.
  • Chakrawarti L, Agrawal R, Dang S, et al. Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat. 2016 Aug;26(8):907–916.
  • Vyas T, Nagi R, Bhatia A, et al. Therapeutic effects of green tea as an antioxidant on oral health- A review. J Family Med Prim Care. 2021 Nov;10(11):3998–4001.
  • Moraes DE, Passos VF, Padovani GC, Bezerra LCBDR, Vasconcelos IM, Santiago SL, PASSOS VF, PADOVANI GC. Protective effect of green tea catechins on eroded human dentin: an in vitro/in situ study. Braz Oral Res. 2021 Nov;19(35):e108.
  • Vaillancourt K, Ben Lagha A, Grenier D. A green tea extract and epigallocatechin-3-gallate attenuate the deleterious effects of irinotecan in an oral epithelial cell model. Arch Oral Biol. 2021 Jun;126:105135.
  • Gan RY, Li HB, Sui ZQ, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review. Crit Rev Food Sci Nutr. 2018 Apr 13;58(6):924–941.
  • Liao S, Tang Y, Chu C, et al. Application of green tea extracts epigallocatechin-3-gallate in dental materials: recent progress and perspectives. J Biomed Mater Res A. 2020 Dec;108(12):2395–2408.
  • Araghizadeh A, Kohanteb J, Fani MM. Inhibitory activity of green tea (Camellia sinensis) extract on some clinically isolated cariogenic and periodontopathic bacteria. Med Princ Pract. 2013;22(4):368–372.
  • Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017 Apr;23(3):276–286.
  • Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018 May;200(4):525–540.
  • Zhang Y, Wang X, Li H, et al. Human oral microbiota and its modulation for oral health. Biomed Pharmacother. 2018 Mar;99:883–893.
  • Shivakumar KM, Vidya SK, Chandu GN. Dental caries vaccine. Indian J Dent Res. 2009 Jan-Mar;20(1):99–106.
  • Ruby JD, Cox CF, Akimoto N, et al. The caries phenomenon: a timeline from witchcraft and superstition to opinions of the 1500s to today’s science. Int J Dent. 2010;2010:432767.
  • Grigalauskienė R, Slabšinskienė E, Vasiliauskienė I. Biological approach of dental caries management. Stomatologija. 2015;17(4):107–112.
  • Zhao IS, Yin IX, Mei ML, et al. Remineralising dentine caries using sodium fluoride with silver nanoparticles: an in vitro study. Int J Nanomedicine. 2020;15:2829–2839.
  • Liao Y, Brandt BW, Li J, et al. Fluoride resistance in Streptococcus mutans: a mini review. J Oral Microbiol. 2017 Jul 6;9(1):1344509.
  • Chen F, Wang D. Novel technologies for the prevention and treatment of dental caries: a patent survey. Expert Opin Ther Pat. 2010 May;20(5):681–694.
  • Clarke JK. On the bacterial factor in the aetiology of dental caries. Br J Exp Pathol. 1924;5:141–147.
  • Islam B, Khan SN, Khan AU. Dental caries: from infection to prevention. Med Sci Monit. 2007 Nov;13(11):RA196–203.
  • Shen S, Samaranayake LP, Yip HK. In vitro growth, acidogenicity and cariogenicity of predominant human root caries flora. J Dent. 2004 Nov;32(8):667–678.
  • Ikigai H, Nakae T, Hara Y, et al. Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta. 1993 Apr 8;1147(1):132–136.
  • Bai L, Takagi S, Ando T, et al. Antimicrobial activity of tea catechin against canine oral bacteria and the functional mechanisms. J Vet Med Sci. 2016 Oct 1;78(9):1439–1445.
  • Arakawa H, Maeda M, Okubo S, et al. Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull. 2004 Mar;27(3):277–281.
  • Wu M, Brown AC. Applications of catechins in the treatment of bacterial infections. Pathogens. 2021 May 1;10(5):546.
  • Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob Agents Chemother. 2011 Mar;55(3):1229–1236.
  • Han S, Abiko Y, Washio J, et al. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of streptococcus mutans and non-mutans streptococci. Caries Res. 2021;55(3):205–214.
  • Senpuku H, Tuna EB, Nagasawa R, et al. The inhibitory effects of polypyrrole on the biofilm formation of Streptococcus mutans. PLoS One. 2019 Nov 27;14(11):e0225584.
  • Liu BH, Yu LC. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm. Colloids Surf B Biointerfaces. 2017 Feb;1(150):98–105.
  • Wu CY, Su TY, Wang MY, et al. Inhibitory effects of tea catechin epigallocatechin-3-gallate against biofilms formed from Streptococcus mutans and a probiotic lactobacillus strain. Arch Oral Biol. 2018 Oct;94:69–77.
  • Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Arch Oral Biol. 2012 Jun;57(6):678–683.
  • Schneider-Rayman M, Steinberg D, Sionov RV, et al. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: an in vitro study. BMC Oral Health. 2021 Sep 15;21(1):447.
  • Vilela MM, Salvador SL, Teixeira IGL, et al. Efficacy of green tea and its extract, epigallocatechin-3-gallate, in the reduction of cariogenic microbiota in children: a randomized clinical trial. Arch Oral Biol. 2020 Jun;114:104727.
  • Theilade E. Advances in oral microbiology. Ann R Australas Coll Dent Surg. 1989;Oct;10:62–71.
  • Svec P, Kukletová M, Sedlácek I. Comparative evaluation of automated ribotyping and RAPD-PCR for typing of Lactobacillus spp. occurring in dental caries. Antonie Van Leeuwenhoek. 2010 Jun;98(1):85–92.
  • Badet C, Richard B, Castaing-Debat M, et al. Adaptation of salivary Lactobacillus strains to xylitol. Arch Oral Biol. 2004 Feb;49(2):161–164.
  • Wen ZT, Yates D, Ahn SJ, et al. Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC Microbiol. 2010 Apr;14(10):111.
  • Byun R, Nadkarni MA, Chhour KL, et al. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol. 2004 Jul;42(7):3128–3136.
  • de Soet JJ, de Graaff J. Microbiology of carious lesions. Dent Update. 1998 Oct;25(8):319–324.
  • Ferrazzano GF, Roberto L, Amato I, et al. Antimicrobial properties of green tea extract against cariogenic microflora: an in vivo study. J Med Food. 2011 Sep;14(9):907–911.
  • Hegde RJ, Kamath S. Comparison of the Streptococcus mutans and Lactobacillus colony count changes in saliva following chlorhexidine (0.12%) mouth rinse, combination mouth rinse, and green tea extract (0.5%) mouth rinse in children. J Indian Soc Pedod Prev Dent. 2017 Apr-Jun;35(2):150–155.
  • Thomas A, Thakur SR, Shetty SB. Anti-microbial efficacy of green tea and chlorhexidine mouth rinses against Streptococcus mutans, Lactobacilli spp and Candida albicans in children with severe early childhood caries: a randomized clinical study. J Indian Soc Pedod Prev Dent. 2016 Jan-Mar;34(1):65–70.
  • Anita P, Sivasamy S, Madan Kumar PD, et al. In vitro antibacterial activity of Camellia sinensis extract against cariogenic microorganisms. J Basic Clin Pharm. 2014 Dec;6(1):35–39.
  • Huang ZW, Zhou XD, Xiao Y, et al. In vitro study of the effect of 11 kinds of natural drugs on the growth and acid production of Lactobacillus. Shanghai Kou Qiang Yi Xue. 2005 Feb;14(1):67–70.
  • Xiao Y, Liu T, Zhan L, et al. The effects of tea polyphenols on the adherence of cariogenic bacterium to the collagen in vitro. Hua Xi Kou Qiang Yi Xue Za Zhi. 2000 Oct;18(5):340–342.
  • Kõll-Klais P, Mändar R, Leibur E, et al. Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol. 2005 Dec;20(6):354–361.
  • Nishihara T, Suzuki N, Yoneda M, et al. Effects of Lactobacillus salivarius-containing tablets on caries risk factors: a randomized open-label clinical trial. BMC Oral Health. 2014 Sep;2(14):110.
  • Kõll P, Mändar R, Marcotte H, et al. Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol. 2008 Apr;23(2):139–147.
  • Näse L, Hatakka K, Savilahti E, et al. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001 Nov-Dec;35(6):412–420.
  • Zhang X, Zhu XL, Sun YK, et al. Fermentation in vitro of EGCG, GCG and EGCG3 “ Me isolated from Oolong tea by human intestinal microbiota. Food Res Int. 2013;54(2):1589–1595.
  • Sourabh A, Kanwar SS, Sud RG, et al. Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas. Braz J Microbiol. 2014 Jan 15;44(3):709–715.
  • Story EN, Azcarate-Peril A, Klaenhammer TR, et al. Effect of green tea and EGCG on the growth rate and cell density of the probiotic bacteria Lactobacillus acidophilus and Lactobacillus gasseri. Faseb J. 2009;23(S1):1.
  • Higuchi T, Suzuki N, Nakaya S, et al. Effects of Lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor. Arch Oral Biol. 2019 Feb;98:243–247.
  • Bowden GH. Microbiology of root surface caries in humans. J Dent Res. 1990 May;69(5):1205–1210.
  • Liu T, Gibbons RJ, Hay DI, et al. Binding of Actinomyces viscosus to collagen: association with the type 1 fimbrial adhesin. Oral Microbiol Immunol. 1991;6(1):1–5.
  • Wang Y, Samaranayake LP, Dykes GA. Plant components affect bacterial biofilms development by altering their cell surface physicochemical properties: a predictability study using Actinomyces naeslundii. FEMS Microbiol Ecol. 2020 Dec 29;97(1):fiaa217.
  • Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA. Anti-plaque effect of a synergistic combination of green tea and Salvadora persica Lagainst primary colonizers of dental plaque. Arch Oral Biol. 2016 Oct;70:117–124.
  • Xiao Y, Liu T, Huang Z, et al. The in vitro study of the effects of 11 kinds of traditional Chinese medicine on the growth and acid production of Actinomyces viscosus. Hua Xi Yi Ke Da Xue Xue Bao. 2002 Apr;33(2):253–255.
  • Wang Y, Lam ATW. Epigallocatechin gallate and gallic acid affect colonization of abiotic surfaces by oral bacteria. Arch Oral Biol. 2020 Dec;120:104922.
  • Wang Y, Chung FF, Lee SM, et al. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res Notes. 2013 Apr 11;6(1):143.
  • Xu X, Chen F, Huang Z, et al. Meeting report: a close look at oral biofilms and microbiomes. Int J Oral Sci. 2018 Aug 15;10(3):28.
  • Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019 Nov 5;11(3):30.
  • Drisko CH. Nonsurgical periodontal therapy. Periodontol 2000. 2001;25(1):77–88.
  • Matsubara VH, Bandara HM, Ishikawa KH, et al. The role of probiotic bacteria in managing periodontal disease: a systematic review. Expert Rev Anti Infect Ther. 2016 Jul;14(7):643–655.
  • Hajishengallis G, Liang S, Payne MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011 Nov 17;10(5):497–506.
  • Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontol 2000. 2011 Feb;55(1):36–47.
  • Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012 Aug;333(1):1–9.
  • Śmiga M, Smalley JW, Ślęzak P, et al. Glycation of host proteins increases pathogenic potential of porphyromonas gingivalis. Int J Mol Sci. 2021 Nov 8;22(21):12084.
  • Cai Y, Chen Z, Liu H, et al. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice. Int Immunopharmacol. 2015 Dec;29(2):839–845.
  • Asahi Y, Noiri Y, Miura J, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. J Appl Microbiol. 2014 May;116(5):1164–1171.
  • Xu X, Zhou XD, Wu CD. Tea catechin EGCg suppresses the mgl gene associated with halitosis. J Dent Res. 2010 Nov;89(11):1304–1308.
  • Hočevar K, Potempa J, Turk B. Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis. Biol Chem. 2018 Nov 27;399(12):1353–1361.
  • Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000. 2010 Oct;54(1):15–44.
  • Fitzpatrick RE, Wijeyewickrema LC, Pike RN. The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol. 2009 May;4(4):471–487.
  • Okamoto M, Sugimoto A, Leung KP, et al. Inhibitory effect of green tea catechins on cysteine proteinases in Porphyromonas gingivalis. Oral Microbiol Immunol. 2004 Apr;19(2):118–120.
  • Sakanaka S, Aizawa M, Kim M, et al. Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis. Biosci Biotechnol Biochem. 1996 May;60(5):745–749.
  • Sakanaka S, Okada Y. Inhibitory effects of green tea polyphenols on the production of a virulence factor of the periodontal-disease-causing anaerobic bacterium Porphyromonas gingivalis. J Agric Food Chem. 2004 Mar 24;52(6):1688–1692.
  • Osawa K, Matsumoto T, Yasuda H, et al. The inhibitory effect of plant extracts on the collagenolytic activity and cytotoxicity of human gingival fibroblasts by Porphyromonas gingivalis crude enzyme. Bull Tokyo Dent Coll. 1991 Feb;32(1):1–7.
  • Makimura M, Hirasawa M, Kobayashi K, et al. Inhibitory effect of tea catechins on collagenase activity. J Periodontol. 1993 Jul;64(7):630–636.
  • Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev. 1998 Dec;62(4):1244–1263.
  • Amano A, Nakagawa I, Okahashi N, et al. Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J Periodontal Res. 2004 Apr;39(2):136–142.
  • Belton CM, Izutsu KT, Goodwin PC, et al. Fluorescence image analysis of the association between Porphyromonas gingivalis and gingival epithelial cells. Cell Microbiol. 1999 Nov;1(3):215–223.
  • Yilmaz O, Watanabe K, Lamont RJ. Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis. Cell Microbiol. 2002 May;4(5):305–314.
  • Ö Y, Young PA, Lamont RJ, et al. Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. Microbiology (Reading). 2003 Sep;149(Pt 9):2417–2426.
  • Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch Oral Biol. 2016 May;65:35–43.
  • Yuan L, Rodrigues PH, Bélanger M, et al. Porphyromonas gingivalis htrA is involved in cellular invasion and in vivo survival. Microbiology (Reading). 2008 Apr;154(Pt 4):1161–1169.
  • Kato S, Kowashi Y, Demuth DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog. 2002 Jan;32(1):1–13.
  • Vega BA, Belinka BA Jr, Kachlany SC. Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA; Leukothera®): mechanisms of action and therapeutic applications. Toxins (Basel). 2019 Aug 26;11(9):489.
  • Nice JB, Balashova NV, Kachlany SC, et al. Aggregatibacter actinomycetemcomitans leukotoxin is delivered to host cells in an LFA-1-indepdendent manner when associated with outer membrane vesicles. Toxins (Basel). 2018 Oct 13;10(10):414.
  • Nakamura K, Ishiyama K, Sheng H, et al. Bactericidal activity and mechanism of photoirradiated polyphenols against gram-positive and -negative bacteria. J Agric Food Chem. 2015 Sep 9;63(35):7707–7713.
  • Hara K, Ohara M, Hayashi I, et al. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health. Eur J Oral Sci. 2012 Apr;120(2):132–139.
  • Kawashima Y. Effects of catechin gallate on bactericidal action and leukotoxic activity of aggregatibacter actinomycetemcomitans. Int J Oral Med Sci. 2011;10(1):20–24
  • Saito M, Tsuzukibashi O, Takada K. Anticytotoxic effect of green tea catechin on aggregatibacter actinomycetemcomitans vesicles. Int J Oral Med Sci. 2012;11(2):101–105
  • Chang EH, Huang J, Lin Z, et al. Catechin-mediated restructuring of a bacterial toxin inhibits activity. Biochim Biophys Acta Gen Subj. 2019 Jan;1863(1):191–198.
  • Webb JN, Koufos E, Brown AC. Inhibition of bacterial toxin activity by the nuclear stain, DRAQ5™. J Membr Biol. 2016 Aug;249(4):503–511.
  • Chang EH, Giaquinto P, Huang J, et al. Epigallocatechin gallate inhibits leukotoxin release by Aggregatibacter actinomycetemcomitans by promoting association with the bacterial membrane. Mol Oral Microbiol. 2020 Jan;35(1):29–39.
  • Chang EH, Brown AC. Epigallocatechin gallate alters leukotoxin secretion and Aggregatibacter actinomycetemcomitans virulence. J Pharm Pharmacol. 2021 Mar 8;73(4):505–514.
  • Bielecki M, Antonyuk S, Strange RW, et al. Prevotella intermedia produces two proteins homologous to Porphyromonas gingivalis HmuY but with different heme coordination mode. Biochem J. 2020 Jan 31;477(2):381–405.
  • Hirasawa M, Takada K, Makimura M, et al. Improvement of periodontal status by green tea catechin using a local delivery system: a clinical pilot study. J Periodontal Res. 2002 Dec;37(6):433–438.
  • Okamoto M, Leung KP, Ansai T, et al. Inhibitory effects of green tea catechins on protein tyrosine phosphatase in Prevotella intermedia. Oral Microbiol Immunol. 2003 Jun;18(3):192–195.
  • Duque C, Dos Santos VR, Abuna GF. Cytocompatibility and synergy of EGCG and cationic peptides against bacteria related to endodontic infections, in planktonic and biofilm conditions. Probiotics Antimicrob Proteins. 2021 Dec;13(6):1808–1819.
  • Bolstad AI, Jensen HB, Bakken V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev. 1996 Jan;9(1):55–71.
  • Shahzad M, Millhouse E, Culshaw S, et al. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 2015 Mar;6(3):719–729.
  • Ben Lagha A, Haas B, Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci Rep. 2017 Mar;21(7):44815.
  • Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69(1):71–92.
  • Nivoix Y, Ledoux MP, Herbrecht R. Antifungal therapy:new and evolving therapies. Semin Respir Crit Care Med. 2020 Feb;41(1):158–174.
  • Park BJ, Park JC, Taguchi H, et al. Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochem Biophys Res Commun. 2006 Aug 25;347(2):401–405.
  • Chen M, Zhai L, Arendrup MC. In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Med Mycol. 2015 Feb 1;53(2):194–198.
  • Hirasawa M, Takada K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J Antimicrob Chemother. 2004 Feb;53(2):225–229.
  • Navarro-Martínez MD, García-Cánovas F, Rodríguez-López JN. Tea polyphenol epigallocatechin-3-gallate inhibits ergosterol synthesis by disturbing folic acid metabolism in Candida albicans. J Antimicrob Chemother. 2006 Jun;57(6):1083–1092.
  • Behbehani JM, Irshad M, Shreaz S, et al. Synergistic effects of tea polyphenol epigallocatechin 3-O-gallate and azole drugs against oral Candida isolates. J Mycol Med. 2019 Jun;29(2):158–167.
  • Evensen NA, Braun PC. The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol. 2009 Sep;55(9):1033–1039.
  • Han Y. Synergic anticandidal effect of epigallocatechin-O-gallate combined with amphotericin B in a murine model of disseminated candidiasis and its anticandidal mechanism. Biol Pharm Bull. 2007 Sep;30(9):1693–1696.
  • Ning Y, Ling J, Wu CD. Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida species. Arch Oral Biol. 2015 Oct;60(10):1565–1570.
  • da Silva CR, de Andrade Neto JB, de Sousa Campos R, et al. Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother. 2014;58(3):1468–1478.
  • Yakin M, Seo B, Hussaini H, et al. Human papillomavirus and oral and oropharyngeal carcinoma: the essentials. Aust Dent J. 2019 Mar;64(1):11–18.
  • Sun Y, Li X, Song S, et al. Integrity of a HPV11 infection cell model and identification of (-)-Epigallocatechin-3-gallate as a potential HPV11 inhibitor. Oncotarget. 2016 Jun 14;7(24):37092–37102.
  • Song JY, Han JH, Song Y, et al. Epigallocatechin-3-gallate can prevent type 2 human papillomavirus E7 from suppressing interferon-stimulated genes. Int J Mol Sci. 2021 Feb 28;22(5):2418.
  • Yap JKW, Kehoe ST, Woodman CBJ, et al. The major constituent of green tea, epigallocatechin-3-Gallate (EGCG), inhibits the growth of HPV18-infected keratinocytes by stimulating proteasomal turnover of the E6 and E7 oncoproteins. Pathogens. 2021 Apr 11;10(4):459.
  • Wang YQ, Lu JL, Liang YR, et al. Suppressive effects of EGCG on cervical cancer. Molecules. 2018 Sep 12;23(9):2334.
  • Bacon TH, Levin MJ, Leary JJ, et al. Herpes simplex virus resistance to Acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev. 2003 Jan;16(1):114–128.
  • Pradhan P, Nguyen ML. Herpes simplex virus virucidal activity of MST-312 and epigallocatechin gallate. Virus Res. 2018 Apr 2;249:93–98.
  • Isaacs CE, Wen GY, Xu W, et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother. 2008 Mar;52(3):962–970.
  • Colpitts CC, Schang LM, Hutt-Fletcher L. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol. 2014 Jul;88(14):7806–7817.
  • Wu CY, Yu ZY, Chen YC, et al. Effects of epigallocatechin-3-gallate and Acyclovir on herpes simplex virus type 1 infection in oral epithelial cells. J Formos Med Assoc. 2021 Dec;120(12):2136–2143.
  • Qiu X, Zhong M, Xiang Y, et al. Self-organizing maps for the classification of gallic acylate polyphenols as HSV-1 inhibitors. Med Chem. 2014 Jun;10(4):388–401.
  • Huo C, Wan SB, Lam WH, et al. The challenge of developing green tea polyphenols as therapeutic agents. Inflammopharmacology. 2008 Oct;16(5):248–252.
  • Mazzanti G, Di Sotto A, Vitalone A. Hepatotoxicity of green tea: an update. Arch Toxicol. 2015 Aug;89(8):1175–1191.
  • Kucera O, Mezera V, Moravcova A, et al. In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. Oxid Med Cell Longev. 2015;2015:476180.
  • Matsumoto Y, Kaihatsu K, Nishino K, et al. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Front Microbiol. 2012 Feb;16(3):53.
  • Xu X, Dai Z, Zhang Z, et al. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: application in dental anti-caries. Eur J Pharmacol. 2021 Apr;15(897):173951.
  • Hu J, Du X, Huang C, et al. Antibacterial and physical properties of EGCG-containing glass ionomer cements. J Dent. 2013 Oct;41(10):927–934.