2,092
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Potential oral probiotic Lactobacillus pentosus MJM60383 inhibits Streptococcus mutans biofilm formation by inhibiting sucrose decomposition

, , &
Article: 2161179 | Received 03 Jun 2022, Accepted 16 Dec 2022, Published online: 28 Dec 2022

References

  • Matsumoto-Nakano M. Role of streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev. 2018;54(1):22–13.
  • Cvitkovitch DG, Li Y-H, Ellen RP. Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest. 2003;112(11):1626–1632.
  • Koga T, Asakawa H, Okahashi N, et al. Sucrose-dependent cell adherence and cariogenicity of serotype c streptococcus mutans. J Gen Microbiol. 1986;132(10):2873–2883.
  • Szajewska H, Guarino A, Hojsak I, et al. Use of probiotics for the management of acute gastroenteritis in children: an update. J Pediatr Gastroenterol Nutr. 2020;71(2):261–269. DOI:10.1097/MPG.0000000000002751.
  • Ganguly NK, Bhattacharya SK, Sesikeran B, et al. ICMR-DBT guidelines for evaluation of probiotics in food. Indian J Med Res. 2011;134(1):22–25.
  • Vuotto C, Longo F, Donelli G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci. 2014;6(4):189–194.
  • Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the Effects of Infection with Enteroinvasive Escherichia Coli (EIEC). Gut. 2003;52(7):988–997.
  • Wong S-S, Quan Toh Z, Dunne EM, et al. Inhibition of streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic lactobacillus rhamnosus GG. BMC Res Notes. 2013;6(1):135.
  • Kõll P, Mändar R, Marcotte H, et al. Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol. 2008;23(2):139–147.
  • Fang F, Xu J, Li Q, et al. Characterization of a lactobacillus brevis strain with potential oral probiotic properties. BMC Microbiol. 2018;18(1):221.
  • Terai T, Okumura T, Imai S, et al. Screening of probiotic candidates in human oral bacteria for the prevention of dental disease. PLoS ONE. 2015;10(6):e0128657.
  • Haukioja A. Probiotics and oral health. Eur J Dent. 2010;4(3):348–355.
  • Zhang Y, Ding Y, Guo Q. Probiotic species in the management of periodontal diseases: an overview. Front Cell Infect Microbiol. 2022;12:806463.
  • Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro - PubMed. (accessed2021-10-29). https://pubmed.ncbi.nlm.nih.gov/20835828/
  • Lim H-S, Yeu J-E, Hong S-P, et al. Characterization of antibacterial cell-free supernatant from oral care probiotic weissella cibaria, CMU. Molecules. 2018;23(8):E1984.
  • Jeong D, Kim D-H, Song K-Y, et al. Antimicrobial and anti-biofilm activities of lactobacillus kefiranofaciens DD2 against oral pathogens. J Oral Microbiol. 2018;10(1):1472985.
  • Palaniyandi SA, Damodharan K, Suh J-W, et al. In Vitro characterization of lactobacillus plantarum strains with inhibitory activity on enteropathogens for use as potential animal probiotics. Indian J Microbiol. 2017;57(2):201–210.
  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012;10(6):2740. doi: 10.2903/j.efsa.2012.2740.
  • Yadav R, Puniya AK, Shukla P. Probiotic properties of lactobacillus plantarum RYPR1 from an indigenous fermented beverage raabadi. Front Microbiol. 2016;7. DOI:10.3389/fmicb.2016.01683
  • Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, et al. Screening of probiotic activities of forty-seven strains of lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol. 1999;65(11):4949–4956.
  • Gezginc Y, Topcal F, Comertpay S, et al. Quantitative analysis of the lactic acid and acetaldehyde produced by streptococcus thermophilus and lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC. J Dairy Sci. 2015;98(3):1426–1434.
  • Ciandrini E, Campana R, Baffone W. Live and heat-killed lactobacillus spp. interfere with streptococcus mutans and streptococcus oralis during biofilm development on titanium surface. Arch Oral Biol. 2017;78:48–57.
  • Minami M, Takase H, Taira M, et al. In Vitro effect of the traditional medicine hainosan (painongsan) on porphyromonas gingivalis. Medicines (Basel). 2019;6(2):E58.
  • Zhang G, Lu M, Liu R, et al. Inhibition of streptococcus mutans biofilm formation and virulence by lactobacillus plantarum K41 isolated from traditional Sichuan pickles. Front Microbiol. 2020;11. DOI:10.3389/fmicb.2020.00774
  • Islam B, Khan SN, Haque I, et al. Novel anti-adherence activity of mulberry leaves: inhibition of streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J Antimicrob Chemother. 2008;62(4):751–757.
  • Ahn KB, Baik JE, Park O-J, et al. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of streptococcus mutans. PLoS ONE. 2018;13(2):e0192694.
  • Wang Y, Wang X, Jiang W, et al. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of streptococcus mutans. J Oral Microbiol. 2018;10(1):1442089.
  • Koo H, Hayacibara MF, Schobel BD, et al. Inhibition of streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother. 2003;52(5):782–789.
  • Durso SC, Vieira LM, Cruz JNS, et al. Sucrose substitutes affect the cariogenic potential of streptococcus mutans biofilms. Caries Res. 2014;48(3):214–222.
  • Kim E-H, Kang S-Y, Park B-I, et al. Chamaecyparis obtusa suppresses virulence genes in streptococcus mutans. Evid Based Complement Alternat Med. 2016;2016:e2396404.
  • Zhang Q, Qin S, Huang Y, et al. Inhibitory and preventive effects of lactobacillus plantarum FB-T9 on dental caries in rats. J Oral Microbiol. 2020;12(1):1703883.
  • Poorni S, Srinivasan MR, Nivedhitha MS. Probiotic streptococcus strains in caries prevention: a systematic review. J Conserv Dent. 2019;22(2):123–128.
  • Kang M-S, Lee D-S, Lee S-A, et al. Effects of probiotic bacterium weissella cibaria CMU on periodontal health and microbiota: a randomised, double-blind, placebo-controlled trial. BMC Oral Health. 2020;20(1):243.
  • Näse L, Hatakka K, Savilahti E, et al. Effect of Long-term consumption of a probiotic bacterium, lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35(6):412–420.
  • Suresh K, Krishna S, Govender P. The use of probiotics and safety concerns: a review. Afr J Microbiol Res. 2012;6(41):6871–6877.
  • Authority (EFSA) EFS. Opinion of the scientific panel on additives and products or substances used in animal feed (FEEDAP) on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. EFSA J. 2005;3(6):223.
  • Tynkkynen S, Singh KV, Varmanen P. Vancomycin resistance factor of lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int J Food Microbiol. 1998;41(3):195–204.
  • Pohjavuori S, Ahola A, Yli-Knuuttila H, et al. Effect of consumption of lactobacillus rhamnosus GG and calcium, in carrot-pineapple juice on dental caries risk in children. undefined. 2010;5(4):221–228.
  • van Palenstein Helderman WH. Lysozyme concentrations in the gingival crevice and at other oral sites in human subjects with and without gingivitis. Arch Oral Biol. 1976;21(4):251–255.
  • Boris S, Suárez JE, Vázquez F, et al. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun. 1998;66(5):1985–1989.
  • Sun Z, Kong J, Hu S, et al. Characterization of a S-layer protein from lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol. 2013;97(5):1941–1952.
  • Yang E, Fan L, Yan J, et al. Influence of culture media, PH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 2018;8(1):10.
  • Wasfi R, Abd El‐Rahman OA, Zafer MM, et al. Probiotic lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries‐inducing streptococcus mutans. J Cell Mol Med. 2018;22(3):1972–1983.
  • Gu M, Cheng J, Lee Y-G, et al. Discovery of novel iminosugar compounds produced by lactobacillus paragasseri MJM60645 and their anti-biofilm activity against streptococcus mutans. Microbiol Spectr. 2022:e0112222. DOI:10.1128/spectrum.01122-22.
  • Kang M, Kang I-C, Kim S-M, et al. Effect of leuconostoc spp. on the formation of streptococcus mutans biofilm. J Microbiol. 2007;45(4):291–296.
  • Monchois V, Willemot R-M, Monsan P. Glucansucrases: mechanism of action and structure–function relationships. FEMS Microbiol Rev. 1999;23(2):131–151.
  • Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective. Crit Rev Oral Biol Med. 2003;14(5):331–344.
  • Munro C, Michalek SM, Macrina FL. Cariogenicity of streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun. 1991;59(7):2316–2323.
  • Yamashita Y, Bowen WH, Burne RA, et al. Role of the streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun. 1993;61(9):3811–3817.
  • Wu C-C, Lin C-T, Wu C-Y, et al. Inhibitory effect of lactobacillus salivarius on streptococcus mutans biofilm formation. Mol Oral Microbiol. 2015;30(1):16–26.
  • Senadheera MD, Guggenheim B, Spatafora GA, et al. A VicRK signal transduction system in streptococcus mutans affects GtfBCD, GbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol. 2005;187(12):4064–4076.
  • Crowley PJ, Brady LJ, Michalek SM, et al. Virulence of a SpaP mutant of streptococcus mutans in a gnotobiotic rat model. Infect Immun. 1999;67(3):1201–1206.
  • Wen ZT, Baker HV, Burne RA. Influence of BrpA on critical virulence attributes of streptococcus mutans. J Bacteriol. 2006;188(8):2983–2992.
  • Guo L, McLean J, Lux R, et al. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of streptococcus mutans. Sci Rep. 2015;5(1):18015.
  • Liu Y, Burne RA. Multiple two-component systems of streptococcus mutans regulate agmatine deiminase gene expression and stress tolerance. J Bacteriol. 2009;191(23):7363–7366.
  • Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review - ScienceDirect. (accessed 2022-02-22). https://www.sciencedirect.com/science/article/pii/S0956713509002229
  • Inhibitory effect of Zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies - PubMed. (accessed 2022-08-07). https://pubmed.ncbi.nlm.nih.gov/25591663/