1,667
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Prevalence and genomic characteristics of zoonotic gastro-intestinal pathogens and ESBL/pAmpC producing Enterobacteriaceae among Swedish corvid birds

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 1701399 | Received 25 Sep 2019, Accepted 30 Nov 2019, Published online: 12 Dec 2019

References

  • WHO. WHO estimates of the global burden of food-borne diseases. Geneva: World Health Organization; 2015.
  • Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2016. EFSA J. 2017;15(12):228.
  • Anonymous. Salmonella - Ett nationellt strategidokument. Stockholm, Sweden: Socialstyrelsen; 2013.
  • Widgren S, Soderlund R, Eriksson E, et al. Longitudinal observational study over 38 months of verotoxigenic Escherichia coli O157: H7status in 126 cattle herds. Prev Vet Med. 2015;121(3–4):343–8.
  • Agren EC, Wahlstrom H, Vesterlund-Carlson C, et al. Comparison of whole genome sequencing typing results and epidemiological contact information from outbreaks of Salmonella Dublin in Swedish cattle herds. Infect Ecol Epidemiol. 2016;6:31782.
  • Wang J, Ma ZB, Zeng ZL, et al. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool Res. 2017;38(2):55–80.
  • Jamborova I, Dolejska M, Vojtech J, et al. Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl Environ Microbiol. 2015;81(2):648–657.
  • Svensson S, Svensson M, Tjernberg M. Svensk fågelatlas. Stockholm: Vår Fågelvärld; 1999.
  • Lockie JD. The food and feeding behaviour of the jackdaw, rook and carrion crow. J Anim Ecol. 1956;25:8.
  • Anonymous. Kajor i staden - en kunskapsöversikt. Stockholm, Sweden: Sveriges kommuner och landsting; 2010.
  • Hudson SJ, Lightfoot NF, Coulson JC, et al. Jackdaws and magpies as vectors of milkborne human Campylobacter infection. Epidemiol Infect. 1991;107(2):363–372.
  • ISO. Microbiology of the food chain – horizontal method for detection and enumeration of Campylobacter spp. – part 1: detection method. Geneva, Switzerland: International Organization for Standardization; 2017.
  • Eriksson E, Aspan A, Gunnarsson A, et al. Prevalence of verotoxin-producing Escherichia coli (VTEC) 0157 in Swedish dairy herds. Epidemiol Infect. 2005;133(2):349–358.
  • Hoorfar J, Ahrens P, Radstrom P. Automated 5ʹ nuclease PCR assay for identification of Salmonella enterica. J Clin Microbiol. 2000;38(9):3429–3435.
  • Lambertz ST, Nilsson C, Hallanvuo S, et al. Real-time PCR method for detection of pathogenic Yersinia enterocolitica in food. Appl Environ Microbiol. 2008;74(19):6060–6067.
  • Lambertz ST, Nilsson C, Hallanvuo S. TaqMan-based real-time PCR method for detection of Yersinia pseudotuberculosis in food. Appl Environ Microbiol. 2008;74(20):6465–6469.
  • Perelle S, Dilasser F, Grout J, et al. Detection by 5ʹ-nuclease PCR of shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157: H7,associated with the world’s most frequent clinical cases. Mol Cell Probes. 2004;18(3):185–192.
  • Nielsen EM, Andersen MT. Detection and characterization of verocytotoxin-producing Escherichia coli by automated 5ʹ nuclease PCR assay. J Clin Microbiol. 2003;41(7):2884–2893.
  • Hall M, Chattaway MA, Reuter S, et al. Use of whole-genus genome sequence data to develop a multilocus sequence typing tool that accurately identifies Yersinia isolates to the species and subspecies levels. J Clin Microbiol. 2015;53(1):35–42.
  • Alikhan NF, Zhou Z, Sergeant MJ, et al. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018;14(4):e1007261.
  • Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–1361.
  • Joensen KG, Tetzschner AM, Iguchi A, et al. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol. 2015;53(8):2410–2426.
  • Thoerner P, Bin Kingombe CI, Bogli-Stuber K, et al. PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution. Appl Environ Microbiol. 2003;69(3):1810–1816.
  • Bach S, de Almeida A, Carniel E. The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett. 2000;183(2):289–294.
  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477.
  • Hunt M, Mather AE, Sanchez-Buso L, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3(10):e000131.
  • Agresti A, Coull BA. Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat. 1998;52(2):119–126.
  • Waldenstrom J, Broman T, Carlsson I, et al. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol. 2002;68(12):5911–5917.
  • Ramonaite S, Novoslavskij A, Zakariene G, et al. High prevalence and genetic diversity of Campylobacter jejuni in wild crows and pigeons. Curr Microbiol. 2015;71(5):559–565.
  • Mdegela RH, Nonga HE, Ngowi HA, et al. Prevalence of thermophilic campylobacter infections in humans, chickens and crows in Morogoro, Tanzania. J Vet Med B Infect Dis Vet Public Health. 2006;53(3):116–121.
  • Hughes LA, Bennett M, Coffey P, et al. Molecular epidemiology and characterization of Campylobacter spp. isolated from wild bird populations in northern England. Appl Environ Microbiol. 2009;75(10):3007–3015.
  • Sheppard SK, Colles FM, McCarthy ND, et al. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol Ecol. 2011;20(16):3484–3490.
  • Cody AJ, McCarthy ND, Bray JE, et al. Wild bird-associated Campylobacter jejuni isolates are a consistent source of human disease, in Oxfordshire, UK. Environ Microbiol Rep. 2015;7(5):782–788.
  • Strachan NJ, Rotariu O, Smith-Palmer A, et al. Identifying the seasonal origins of human campylobacteriosis. Epidemiol Infect. 2013;141(6):1267–1275.
  • Anonymous. Campylobacterinfektion - Ett nationellt strategidokument. Stockholm, Sweden: Socialstyrelsen; 2013.
  • BIOHAZ. Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 2010;8(1):1437.
  • Weis AM, Storey DB, Taff CC, et al. Genomic comparison of Campylobacter spp. and their potential for zoonotic transmission between birds, primates, and livestock. Appl Environ Microbiol. 2016;82(24):7165–7175.
  • Friis LM, Pin C, Taylor DE, et al. A role for the tet(O) plasmid in maintaining Campylobacter plasticity. Plasmid. 2007;57(1):18–28.
  • Swedres-Svarm 2018. Consumption of antibiotics and occurrence of resistance in Sweden. Solna/Uppsala: Public Health Agency of Sweden and National Veterinary Institute; 2019.
  • Bancerz-Kisiel A, Pieczywek M, Lada P, et al. The most important virulence markers of Yersinia enterocolitica and their role during infection. Genes (Basel). 2018;9:5.
  • Atterby C, Borjesson S, Ny S, et al. ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans? PloS One. 2017;12(12):e0190380.
  • Ny S, Lofmark S, Borjesson S, et al. Community carriage of ESBL-producing Escherichia coli is associated with strains of low pathogenicity: a Swedish nationwide study. J Antimicrob Chemother. 2017;72(2):582–588.
  • Soderlund R, Jernberg C, Tronnberg L, et al. Linked seasonal outbreaks of Salmonella typhimurium among passerine birds, domestic cats and humans, Sweden, 2009 to 2016. Euro Surveill. 2019;24:34.