1,762
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Is composition of vertebrates an indicator of the prevalence of tick-borne pathogens?

&
Article: 2025647 | Received 04 Nov 2021, Accepted 30 Dec 2021, Published online: 10 Jan 2022

References

  • Konopka A. What is microbial community ecology? ISME J. 2009;3(11):1–16.
  • Cairns J, McCormick PV, Niederlehner BR. A proposed framework for developing indicators of ecosystem health. Hydrobiologia. 1993;263(1):1–44.
  • Bertollo P. Assessing ecosystem health in governed landscapes: a framework for developing core indicators. Ecosystem Health. 1998;4(1):33–51.
  • Hawkins BA, Field R, Cornell HV, et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology. 2003;84(12):3105–3117.
  • Bordes F, Morand S. The impact of multiple infections on wild animal hosts: a review. Infect Ecol Epidemiol. 2011;1(1):7346.
  • Mouritsen KN, Poulin R. Parasites boosts biodiversity and changes animal community structure by trait‐mediated indirect effects. Oikos. 2005;108(2):344–350.
  • Mouritsen KN, Poulin R. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology. 2002;124(7):101–117.
  • Watve MG, Sukumar R. Parasite abundance and diversity in mammals: correlates with host ecology. Proc Nat Acad Sci. 1995;92(19):8945–8949.
  • Poulin R. The functional importance of parasites in animal communities: many roles at many levels? Int J Parasitol. 1999;29(6):903–914.
  • Poulin R, Krasnov BR, Mouillot D, et al. The comparative ecology and biogeography of parasites. Philos Trans R Soc B. 2011;366(1576):2379–2390.
  • Mannelli A, Bertolotti L, Gern L, et al. Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev. 2012;36(4):837–861.
  • Hofmeester TR, Krawczyk AI, Van Leeuwen AD, et al. Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasit Vectors. 2018;11(1):1–13.
  • Terraube J. Can protected areas mitigate Lyme disease risk in Fennoscandia? EcoHealth. 2019;16(2):184–190.
  • Krasnov BR, Stanko M, Morand S. Host community structure and infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. Oecologia. 2007;154(1):185–194.
  • Linske MA, Williams SC, Stafford III KC, et al. Ixodes scapularis (Acari: ixodidae) reservoir host diversity and abundance impacts on dilution of Borrelia burgdorferi (Spirochaetales: spirochaetaceae) in residential and woodland habitats in Connecticut, USA. J Med Entomol. 2018;55(3):681–690.
  • Hofmeester TR, Coipan EC, Van Wieren SE, et al. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett. 2016;11(4):43001.
  • Hofmeester TR, Jansen PA, Wijnen HJ, et al. Cascading effects of predator activity on tick-borne disease risk. Philos Trans R Soc B. 2017;284:20170453.
  • Takumi K, Hofmeester TR, Sprong H. Red and fallow deer determine the density of Ixodes ricinus nymphs containing Anaplasma phagocytophilum. Parasit Vectors. 2021;14(1):1–9.
  • Kilpatrick AM, Dobson AD, Levi T, et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc B. 2017;372(1722):20160117.
  • Hill N, Woolley SN, Foster S, et al. Determining marine bioregions: a comparison of quantitative approaches. Meth Ecol Evolut. 2020;11(10):1258–1272.
  • Estrada-Peña A, Sprong H, Cabezas-Cruz A, et al. Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Parasit Vectors. 2016;9(1):1–15.
  • Estrada-Peña A, Cutler S, Potkonjak A, et al. An updated meta-analysis of the distribution and prevalence of Borrelia burgdorferi s.l. in ticks in Europe. Int J Health Geogr. 2018;17(1):1–16.
  • Estrada-Peña A, Estrada-Sánchez A, de La Fuente J. A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasit Vectors. 2014;7(1):302.
  • Hijmans RJ, Phillips S, Leathwick J, et al. (2020). dismo: species distribution modeling. R package version 1.3-3. Available from: https://CRAN.R-project.org/package=dismo.
  • R Core Team (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria. Available from: https://www.R-project.org
  • Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., d'Amen, M., Randin, C., and Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787.
  • Estrada-Peña A, Estrada-Sánchez A, Estrada-Sánchez D. Methodological caveats in the environmental modelling and projections of climate niche for ticks, with examples for Ixodes ricinus (Ixodidae). Vet Parasitol. 2015;208(1–2):14–25.
  • Rotllan-Puig, X., & Traveset, A. (2021). Determining the minimal background area for species distribution models: MinBAR package. Ecological Modelling, 439, 109353.
  • Heibl C, Calenge C (2018). phyloclim: integrating phylogenetics and climatic Niche modeling. R package version 0.9.5. Available from: https://CRAN.R-project.org/package=phyloclim
  • Evans MEK, Smith SA, Flynn RS, et al. Climate, Niche evolution, and diversification of the “Bird-Cage” evening primroses (Oenothera, Sections Anogra and Kleinia). Am Natur. 2009;173(2):225–240.
  • Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1–27.
  • Michonneau F, Brown JW, Winter DJ. rotl: an R package to interact with the open tree of life data. Meth Ecol Evolut. 2016;7(12):1476–1481.
  • Kembel SW, Cowan PD, Helmus MR, et al. Picante: r tools for integrating phylogenies and ecology. Bioinformatics. 2010;26(11):1463–1464.
  • Fernández-Ruiz, N., & Estrada-Peña, A. (2020). Could climate trends disrupt the contact rates between Ixodes ricinus (Acari, Ixodidae) and the reservoirs of Borrelia burgdorferi sl?. PloS one, 15(5), e0233771.
  • Krogh A. What are artificial neural networks? Nat Biotechnol. 2008;26(2):195–197.
  • Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
  • Afanador NL, Smolinska A, Tran TN, et al. Unsupervised random forest: a tutorial with case studies. Journal of Chemometrics. 2016;30(5):232–241.
  • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189–1232.
  • Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–139.
  • Kira K, Rendell LA. The feature selection problem: traditional methods and a new algorithm. Association for the Advancement of Artificial Inteligence. 1992;2:129–134.
  • Heylen D, Tijsse E, Fonville M, et al. Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol. 2013;15(2):663–673.
  • Mysterud A, Stigum VM, Linløkken H. How general are generalist parasites? The small mammal part of the Lyme disease transmission cycle in two ecosystems in Northern Europe. Oecologia. 2019;190(1):115–126.
  • Fabri ND, Sprong H, Hofmeester TR. Wild ungulate species differ in their contribution to the transmission of Ixodes ricinus-borne pathogens. Parasit Vectors. 2021;14(1):360.
  • Mysterud A, Stigum VM, Jaarsma RI, et al. Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from Northern Europe. Sci Rep. 2019;9(1):1–8.
  • Ostfeld, R. S., Levi, T., Jolles, A. E., Martin, L. B., Hosseini, P. R., & Keesing, F. (2014). Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PloS one, 9(9), e107387.
  • Brunner JL, LoGiudice K, Ostfeld RS. Estimating reservoir competence of Borrelia burgdorferi hosts: prevalence and infectivity, sensitivity, and specificity. J Med Entomol. 2008;45(1):139–147.
  • Baquero RA, Tellería JL. Species richness, rarity and endemicity of European mammals: a biogeographical approach. Biodiversity & Conservation. 2000;10(1):29–44.
  • Mouchet M, Levers C, Zupan L, et al. Testing the effectiveness of environmental variables to explain European terrestrial vertebrate species richness across biogeographical scales. PLoS One. 2015;10(7):e0131924.
  • Webb CO, Ackerly DD, McPeek MA, et al. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002;33(1):475–505.
  • Cadotte MW, Dinnage R, Tilman D. Phylogenetic diversity promotes ecosystem stability. Ecology. 2012;93:S223–S233.
  • Legendre P, Mi X, Ren H, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology. 2009;90(3):663–674.
  • Legendre P, De Cáceres M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett. 2013;16(8):951–963.
  • De Cáceres M, Legendre P, Wiser SK, et al. Using species combinations in indicator value analyses. Meth Ecol Evolut. 2012;3(6):973–982.
  • Maiorano L, Amori G, Capula M, et al. Threats from climate change to terrestrial vertebrate hotspots in Europe. PloS One. 2013;8(9):e74989.
  • Newbold T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society, Series B. 2018;285:20180792.
  • Estrada-Peña A, Ortega C, Sánchez N, et al. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western Palearctic. Appl Environ Microbiol. 2011;77(11):3838–3845.
  • Hovius JW, van Dam AP, Fikrig E. Tick–host–pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007;23(9):434–438.
  • Jordán F, Liu WC, Mike Á. Trophic field overlap: a new approach to quantify keystone species. Ecol Modell. 2009;220(21):2899–2907.
  • Kurtenbach, K., De Michelis, S., Etti, S., Schäfer, S. M., Sewell, H. S., Brade, V., & Kraiczy, P. (2002). Host association of Borrelia burgdorferi sensu lato–the key role of host complement. Trends in microbiology, 10(2), 74–79.
  • Adams B, Walter KS, Diuk-Wasser MA. Host specialisation, immune cross-reaction and the composition of communities of co-circulating Borrelia strains. Bull Math Biol. 2021;83(6):1–24.
  • Huang CI, Kay SC, Davis S, et al. High burdens of Ixodes scapularis larval ticks on white-tailed deer may limit Lyme disease risk in a low biodiversity setting. Ticks Tick Borne Dis. 2019;10(2):258–268.
  • Ehrmann S, Ruyts SC, Scherer-Lorenzen M, et al. Habitat properties are key drivers of Borrelia burgdorferi (sl.) prevalence in Ixodes ricinus populations of deciduous forest fragments. Parasit Vectors. 2018;11(1):1–15.
  • Mechai S, Margos G, Feil EJ, et al. Evidence for an effect of landscape connectivity on Borrelia burgdorferi sensu stricto dispersion in a zone of range expansion. Ticks Tick Borne Dis. 2018;9(6):1407–1415.
  • Millins C, Dickinson ER, Isakovic P, et al. Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen. Parasit Vectors. 2018;11(1):1–11.
  • Pettersson JH, Golovljova I, Vene S, et al. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks in Northern Europe with particular reference to Southern Sweden. Parasit Vectors. 2014;7(1):1–11.
  • Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61(1):1–10.
  • Mysterud A, Easterday WR, Stigum VM, et al. Contrasting emergence of Lyme disease across ecosystems. Nat Commun. 2016;7(1):1–11.
  • Mysterud A, Jore S, Østerås O, et al. Emergence of tick-borne diseases at northern latitudes in Europe: a comparative approach. Sci Rep. 2017;7(1):1–12.