4,893
Views
110
CrossRef citations to date
0
Altmetric
Review Article

Biological roles and potential applications of immune cell-derived extracellular vesicles

, , , , &
Article: 1400370 | Received 06 Jul 2017, Accepted 22 Oct 2017, Published online: 22 Nov 2017

References

  • Colombo M, Raposo G, Théry C Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:1–19. PubMed PMID: 25288114. DOI:10.1146/annurev-cellbio-101512-122326
  • Bobrie A, Colombo M, Raposo G, et al. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–1668. Epub 2011/06/08. PubMed PMID: 21645191. DOI:10.1111/j.1600-0854.2011.01225.x
  • Kalra H, Drummen GP, Mathivanan S Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17(2):170. Epub 2016/02/06. PubMed PMID: 26861301; PMCID: PMC4783904. DOI:10.3390/ijms17020170
  • Mathivanan S, Ji H, Simpson RJ Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73(10):1907–1920. Epub 2010/07/01. PubMed PMID: 20601276. DOI:10.1016/j.jprot.2010.06.006
  • Lötvall J, Hill AF, Hochberg F, et al., Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. PubMed PMID: 25536934; PMCID: PMC4275645.
  • Minciacchi VR, You S, Spinelli C, et al., Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6(13):11327–11341. PubMed PMID: 25857301; PMCID: PMC4484459. DOI:10.18632/oncotarget.3598
  • Keerthikumar S, Gangoda L, Liem M, et al., Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 2015;6(17):15375–15396. PubMed PMID: 25944692; PMCID: PMC4558158. DOI:10.18632/oncotarget.3801
  • Kowal J, Arrasb G, Colomboa M, et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113(8):E968–77. PMID: 26858453. PMCID: PMC4776515. DOI:10.1073/pnas.1521230113
  • Martínez de Lizarrondo S, Roncal C, Calvayrac O, et al., Synergistic effect of thrombin and CD40 ligand on endothelial matrix metalloproteinase-10 expression and microparticle generation in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2012;32(6):1477–1487. Epub 2012/04/05. PubMed PMID: 22492089. DOI:10.1161/ATVBAHA.112.248773
  • Falati S, Liu Q, Gross P, et al., Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med. 2003;197(11):1585–1598. PubMed PMID: 12782720; PMCID: PMC2193915. DOI:10.1084/jem.20021868
  • Mezouar S, Darbousset R, Dignat-George F, et al. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer. 2015;136(2):462–475. Epub 2014/06/09. PubMed PMID: 24889539. DOI:10.1002/ijc.28997
  • Pluskota E, Woody NM, Szpak D, et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood. 2008;112(6):2327–2335. Epub 2008/05/28. PubMed PMID: 18509085; PMCID: PMC2532806. DOI:10.1182/blood-2007-12-127183
  • Muralidharan-Chari V, Clancy JW, Sedgwick A, et al. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(Pt 10):1603–1611. PubMed PMID: 20445011; PMCID: PMC2864708. DOI:10.1242/jcs.064386
  • Laulagnier K, Vincent-Schneider H, Hamdi S, et al., Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids. Blood Cells Mol Dis. 2005;35(2):116–121. PubMed PMID: 16023874. DOI:10.1016/j.bcmd.2005.05.010
  • Trajkovic K, Hsu C, Chiantia S, et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–1247. PubMed PMID: 18309083. DOI:10.1126/science.1153124
  • Llorente A, Skotland T, Sylvänne T, et al., Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 2013;1831(7):1302–1309. PubMed PMID: 24046871.
  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. PubMed PMID: 17486113. DOI:10.1038/ncb1596
  • Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, et al., Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. Epub 2011/04/21. PubMed PMID: 21505438; PMCID: 3104548. DOI:10.1038/ncomms1285
  • Nolte-’T Hoen EN, Buermans HP, Waasdorp M, et al., Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272–9285. Epub 2012/07/19. PubMed PMID: 22821563; PMCID: PMC3467056. DOI:10.1093/nar/gks658
  • Montecalvo A, Larregina AT, Shufesky WJ, et al., Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–766. Epub 2011/10/28. PubMed PMID: 22031862; PMCID: 3265200. DOI:10.1182/blood-2011-02-338004
  • van den Boorn JG, Dassler J, Coch C, et al., Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. 2013;65(3):331–335. Epub 2012/07/04. PubMed PMID: 22750807. DOI:10.1016/j.addr.2012.06.011
  • Raimondo F, Morosi L, Chinello C, et al. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011;11(4):709–720. PubMed PMID: 21241021. DOI:10.1002/pmic.201000422
  • Schorey JS, Cheng Y, Singh PP, et al. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 2015;16(1):24–43. Epub 2014/12/08. PubMed PMID: 25488940; PMCID: PMC4304727. DOI:10.15252/embr.201439363
  • Carrière J, Barnich N, Nguyen HT Exosomes: from functions in host-pathogen interactions and immunity to diagnostic and therapeutic opportunities. Rev Physiol Biochem Pharmacol. 2016;172:39–75. PubMed PMID: 27600934. DOI:10.1007/112_2016_7
  • Choi DS, Kim DK, Kim YK, et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013; 13 (10–11): 1554–1571. PubMed PMID: 23401200. DOI:10.1002/pmic.201200329
  • Challagundla KB, Wise PM, Neviani P, et al., Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107(7). PubMed PMID: 25972604; PMCID: PMC4651042. DOI:10.1093/jnci/djv135
  • Ratajczak J, Miekus K, Kucia M, et al., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–856. PMID: 16453000.
  • Fabbri M, Paone A, Calore F, et al. A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol. 2013;10(2):169–174. Epub 2013/01/09. PubMed PMID: 23296026; PMCID: 3594274. DOI:10.4161/rna.23144
  • Anastasiadou E, Slack FJ Cancer. Malicious exosomes. Science. 2014;346(6216):1459–1460. PubMed PMID: 25525233. DOI:10.1126/science.aaa4024
  • Ahadi A, Brennan S, Kennedy PJ, et al. Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci Rep. 2016;6:24922. Epub 2016/04/22. PubMed PMID: 27102850; PMCID: PMC4840345. DOI:10.1038/srep24922
  • Tosar JP, Cayota A, Eitan E, et al., Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J Extracell Vesicles. 2017;6(1):1272832. Epub 2017/01/12. PubMed PMID: 28326168; PMCID: PMC5328325. DOI:10.1080/20013078.2016.1272832
  • Thakur BK, Zhang H, Becker A, et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–769. PMID: 24710597. DOI:10.1038/cr.2014.44
  • Cai J, Han Y, Ren H, et al., Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol. 2013;5(4):227–238. PMID: 23580760. DOI:10.1093/jmcb/mjt011
  • Cai J, Wu G, Tan X, et al., Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice. PLoS One. 2014;9(8):e105200. PMID: 25133686. DOI:10.1371/journal.pone.0105200
  • Balaj L, Lessard R, Dai L, et al., Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180. PMID: 21285958. DOI:10.1038/ncomms1180
  • Németh A, Orgovan N, Sódar BW, et al., Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep. 2017;7(1):8202. PMID: 28811610. DOI:10.1038/s41598-017-08392-1
  • Lian Q, Xu J, Yan S, et al., Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 2017;27(6):784–800. PMID: 28409562. DOI:10.1038/cr.2017.54
  • Coumans FAW, Brisson AR, Buzas EI, et al., Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–1648. PMID: 28495994. DOI:10.1161/CIRCRESAHA.117.309417
  • Sobo-Vujanovic A, Munich S, Vujanovic NL Dendritic-cell exosomes cross-present Toll-like receptor-ligands and activate bystander dendritic cells. Cell Immunol. 2014; 289 (1–2): 119–127. Epub 2014/04/08. PubMed PMID: 24759079; PMCID: PMC4045011. DOI:10.1016/j.cellimm.2014.03.016
  • Vukman KV, Försönits A, Oszvald Á, et al. Mast cell secretome: soluble and vesicular components. Semin Cell Dev Biol. 2017;67:65–73. PMID: 28189858. DOI:10.1016/j.semcdb.2017.02.002
  • McDonald MK, Tian Y, Qureshi RA, et al. Functional significance of macrophage-derived exosomes in inflammation and pain Pain. 2014;155(8):1527–1539. Epub 2014/04/30. PubMed PMID: 24792623; PMCID: PMC4106699. DOI:10.1016/j.pain.2014.04.029
  • Lee HD, Kim YH, Kim DS Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking. Eur J Immunol. 2014;44(4):1156–1169. Epub 2013/12/18. PubMed PMID: 24338844. DOI:10.1002/eji.201343660
  • Buschow SI, van Balkom BW, Aalberts M, et al. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol. 2010;88(8):851–856. Epub 2010/05/11. PubMed PMID: 20458337. DOI:10.1038/icb.2010.64
  • Zhang H, Xie Y, Li W, et al. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol. 2011;8(1):23–30. Epub 2010/12/13. PubMed PMID: 21200381; PMCID: PMC4002994. DOI:10.1038/cmi.2010.59
  • Yu X, Huang C, Song B, et al., CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 2013; 285 (1–2): 62–68. Epub 2013/06/28. PubMed PMID: 24095986. DOI:10.1016/j.cellimm.2013.06.010
  • Zhang B, Yin Y, Lai RC, et al. Immunotherapeutic potential of extracellular vesicles. Front Immunol. 2014;5:518. Epub 2014/10/22. PubMed PMID: 25374570; PMCID: PMC4205852. DOI:10.3389/fimmu.2014.00518
  • Srinivasan S, Vannberg FO, Dixon JB Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci Rep. 2016;6:24436. PMID: 27087234. DOI:10.1038/srep24436
  • Milasan A, Tessandier N, Tan S, et al. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell Vesicles. 2016;5:31427. PMID: 27664155. DOI:10.3402/jev.v5.31427
  • Sirisinha S Evolutionary insights into the origin of innate and adaptive immune systems: different shades of grey. Asian Pac J Allergy Immunol. 2014;32(1):3–15. PubMed PMID: 24641285.
  • Théry C, Amigorena S The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol. 2001;13(1):45–51. PubMed PMID: 11154916.
  • Ferrari D, McNamee EN, Idzko M, et al. Purinergic Signaling During Immune Cell Trafficking. Trends Immunol. 2016;37(6):399–411. Epub 2016/04/30. PubMed PMID: 27142306. DOI:10.1016/j.it.2016.04.004
  • Akdis M, Aab A, Altunbulakli C, et al., Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010. Epub 2016/08/28. PubMed PMID: 27577879. DOI:10.1016/j.jaci.2016.06.033
  • Yanez-Mo M, Siljander PR, Andreu Z, et al., Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. PubMed PMID: 25979354; PMCID: PMC4433489. DOI:10.3402/jev.v4.27066
  • Simhadri VR, Reiners KS, Hansen HP, et al., Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One. 2008;3(10):e3377. Epub 2008/10/13. PubMed PMID: 18852879; PMCID: PMC2566590. DOI:10.1371/journal.pone.0003377
  • Viaud S, Terme M, Flament C, et al., Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One. 2009;4(3):e4942. Epub 2009/03/26. PubMed PMID: 19319200; PMCID: 2657211. DOI:10.1371/journal.pone.0004942
  • Munich S, Sobo-Vujanovic A, Buchser WJ, et al. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology. 2012;1(7):1074–1083. Epub 2012/11/22. PubMed PMID: 23170255; PMCID: 3494621. DOI:10.4161/onci.20897
  • Zhang J, Basher F, Wu JD NKG2D Ligands in Tumor Immunity: two Sides of a Coin. Front Immunol. 2015;6:97. PubMed PMID: 25788898; PMCID: 4349182. DOI:10.3389/fimmu.2015.00097
  • Lugini L, Cecchetti S, Huber V, et al., Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 2012;189(6):2833–2842. Epub 2012/08/21. PubMed PMID: 22904309. DOI:10.4049/jimmunol.1101988
  • Jong AY, Wu CH, Li J, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6(1):1294368. PubMed PMID: 28326171; PMCID: PMC5345580. DOI:10.1080/20013078.2017.1294368
  • Ismail N, Wang Y, Dakhlallah D, et al., Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121(6):984–995. Epub 2012/11/09. PubMed PMID: 23144169; PMCID: PMC3567345. DOI:10.1182/blood-2011-08-374793
  • Bhatnagar S, Shinagawa K, Castellino FJ, et al. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood. 2007;110(9):3234–3244. Epub 2007/07/31. PubMed PMID: 17666571; PMCID: PMC2200902. DOI:10.1182/blood-2007-03-079152.
  • Anand PK, Anand E, Bleck CK, et al. Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria. PLoS One. 2010;5(4):e10136. Epub 2010/04/12. PubMed PMID: 20405033; PMCID: PMC2853569. DOI:10.1371/journal.pone.0010136
  • Bhatnagar S, Schorey JS Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem. 2007;282(35):25779–25789. Epub 2007/06/25. PubMed PMID: 17591775; PMCID: PMC3636815. DOI:10.1074/jbc.M702277200
  • Truman JP, Al Gadban MM, Smith KJ, et al., Differential regulation of acid sphingomyelinase in macrophages stimulated with oxidized low-density lipoprotein (LDL) and oxidized LDL immune complexes: role in phagocytosis and cytokine release. Immunology. 2012;136(1):30–45. PubMed PMID: 22236141; PMCID: PMC3372755. DOI:10.1111/j.1365-2567.2012.03552.x
  • Sarkar A, Mitra S, Mehta S, et al. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One. 2009:4(9):e7140. PMID:19779610. PMCID: PMC2744928. DOI:10.1371/journal.pone.0007140
  • de Rivero Vaccari JP, Dietrich WD, Keane RW Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34(3):369–375. PMID: 24398940. DOI:10.1038/jcbfm.2013.227
  • Zhang Y, Liu F, Yuan Y, et al., Inflammasome-derived exosomes activate NF-κB signaling in macrophages. J Proteome Res. 2017;16(1):170–178. PMID: 27684284. DOI:10.1021/acs.jproteome.6b00599
  • Gasser O, Schifferli JA Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood. 2004;104(8):2543–2548. Epub 2004/06/22. PubMed PMID: 15213101. DOI:10.1182/blood-2004-01-0361
  • Giri PK, Kruh NA, Dobos KM, et al. Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics. 2010;10(17):3190–3202. PubMed PMID: 20662102; PMCID: PMC3664454. DOI:10.1002/pmic.200900840
  • Giri PK, Schorey JS Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One. 2008;3(6):e2461. Epub 2008/06/18. PubMed PMID: 18560543; PMCID: PMC2413420. DOI:10.1371/journal.pone.0002461
  • Izquierdo-Useros N, Lorizate M, Puertas MC, et al., Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012;10(12):e1001448. Epub 2012/12/18. PubMed PMID: 23271952; PMCID: PMC3525531. DOI:10.1371/journal.pbio.1001448
  • Utsugi-Kobukai S, Fujimaki H, Hotta C, et al., Minami M. MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol Lett. 2003; 89 (2–3): 125–131. PubMed PMID: 14556969.
  • Segura E, Amigorena S, Théry C Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis. 2005;35(2):89–93. PubMed PMID: 15990342. DOI:10.1016/j.bcmd.2005.05.003
  • Luketic L, Delanghe J, Sobol PT, et al., Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol. 2007;179(8):5024–5032. PubMed PMID: 17911587.
  • Admyre C, Johansson SM, Paulie S, et al. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol. 2006;36(7):1772–1781. PubMed PMID: 16761310. DOI:10.1002/eji.200535615
  • Hwang I, Shen X, Sprent J Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci U S A. 2003;100(11):6670–6675. Epub 2003/05/12. PubMed PMID: 12743365; PMCID: PMC164505. DOI:10.1073/pnas.1131852100
  • Segura E, Nicco C, Lombard B, et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood. 2005;106(1):216–223. Epub 2005/03/24. PubMed PMID: 15790784. DOI:10.1182/blood-2005-01-0220
  • Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–1172. PubMed PMID: 8642258; PMCID: PMC2192324.
  • Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, et al. Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol. 2002;14(7):713–722. PubMed PMID: 12096030.
  • Montecalvo A, Shufesky WJ, Stolz DB, et al., Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol. 2008;180(5):3081–3090. PubMed PMID: 18292531.
  • Théry C, Duban L, Segura E, et al., Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3(12):1156–1162. Epub 2002/11/11. PubMed PMID: 12426563. DOI:10.1038/ni854
  • Chaput N, Schartz NE, André F, et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol. 2004;172(4):2137–2146. PubMed PMID: 14764679.
  • Yewdell JW, Dolan BP Immunology: cross-dressers turn on T cells. Nature. 2011;471(7340):581–582. PubMed PMID: 21455165; PMCID: PMC3400133. DOI:10.1038/471581a
  • Coppieters K, Barral AM, Juedes A, et al., No significant CTL cross-priming by dendritic cell-derived exosomes during murine lymphocytic choriomeningitis virus infection. J Immunol. 2009;182(4):2213–2220. PubMed PMID: 19201875. DOI:10.4049/jimmunol.0802578
  • Wakim LM, Bevan MJ Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature. 2011;471(7340):629–632. PubMed PMID: 21455179; PMCID: PMC3423191. DOI:10.1038/nature09863
  • Wolfers J, Lozier A, Raposo G, et al., Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303. PubMed PMID: 11231627. DOI:10.1038/85438
  • Andre F, Schartz NE, Movassagh M, et al., Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002;360(9329):295–305. PubMed PMID: 12147373. DOI:10.1016/S0140-6736(02)09552-1
  • Napoletano C, Rughetti A, Landi R, et al., Immunogenicity of allo-vesicle carrying ERBB2 tumor antigen for dendritic cell-based anti-tumor immunotherapy. Int J Immunopathol Pharmacol. 2009;22(3):647–658. PubMed PMID: 19822081.
  • Qazi KR, Gehrmann U, Domange Jordö E, et al., Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood. 2009;113(12):2673–2683. Epub 2009/01/27. PubMed PMID: 19176319. DOI:10.1182/blood-2008-04-153536
  • Skokos D, Le Panse S, Villa I, et al., Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol. 2001;166(2):868–876. PubMed PMID: 11145662.
  • Skokos D, Botros HG, Demeure C, et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol. 2003;170(6):3037–3045. PubMed PMID: 12626558.
  • Véron P, Segura E, Sugano G, et al. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol Dis. 2005;35(2):81–88. PubMed PMID: 15982908. DOI:10.1016/j.bcmd.2005.05.001
  • Théry C, Regnault A, Garin J, et al., Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 1999;147(3):599–610. PubMed PMID: 10545503; PMCID: PMC2151184.
  • Benito-Martin A, Di Giannatale A, Ceder S, et al. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol. 2015; 6:66. PMID: 25759690.
  • Skokos D, Goubran-Botros H, Roa M, et al. Immunoregulatory properties of mast cell-derived exosomes. Mol Immunol. 2002; 38(16–18):1359–1362. PMID: 12217408. DOI:10.1016/j.semcdb.2017.02.002
  • Li F, Wang Y, Lin L, et al. Mast cell-derived exosomes promote Th2 cell differentiation via OX40L-OX40 ligation. J Immunol Res. 2016;2016:3623898. PMID: 27066504
  • Al-Nedawi K, Szemraj J, Cierniewski CS Mast cell-derived exosomes activate endothelial cells to secrete plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol. 2005; 25(8):1744–1749. PMID: 15920032.
  • Xiao H, Lässer C, Shelke GV, et al., Mast cell exosomes promote lung adenocarcinoma cell proliferation - role of KIT-stem cell factor signaling. Cell Commun Signal. 2014; 12:64. PMID: 25311367.
  • Nolte-’T Hoen EN, Wauben MH Immune cell-derived vesicles: modulators and mediators of inflammation. Curr Pharm Des. 2012;18(16):2357–2368. PubMed PMID: 22390699.
  • Wahlgren J, Karlson Tde L, Glader P, et al. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One. 2012;7(11):e49723. PubMed PMID: 23166755; PMCID: 3500321. DOI:10.1371/journal.pone.0049723
  • Shefler I, Salamon P, Reshef T, et al. T cell-induced mast cell activation: a role for microparticles released from activated T cells. J Immunol. 2010;185(7):4206–4212. Epub 2010/09/01. PubMed PMID: 20810987. DOI:10.4049/jimmunol.1000409
  • Shefler I, Pasmanik-Chor M, Kidron D, et al. T cell-derived microvesicles induce mast cell production of IL-24: relevance to inflammatory skin diseases. J Allergy Clin Immunol. 2014;133(1):217-24.e1-3. Epub 2013/06/12. PubMed PMID: 23768573. DOI:10.1016/j.jaci.2013.04.035
  • Cai Z, Yang F, Yu L, et al., Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 2012;188(12):5954–5961. Epub 2012/05/09. PubMed PMID: 22573809. DOI:10.4049/jimmunol.1103466
  • Robbins PD, Morelli AE Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195–208. PubMed PMID: 24566916; PMCID: PMC4350779. DOI:10.1038/nri3622
  • Skogberg G, Gudmundsdottir J, van der Post S, et al., Characterization of human thymic exosomes. PLoS One. 2013;8(7):e67554. PMID: 23844026. DOI:10.1371/journal.pone.0067554
  • Skogberg G, Lundberg V, Berglund M, et al., Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93(8):727–734. PMID: 25776846. DOI:10.1038/icb.2015.33
  • Wang GJ, Liu Y, Qin A, et al. Thymus exosomeslike particles induce regulatory T cells. J Immunol. 2008; 181:5242–5248. PMID: 18832678.
  • Tang XJ, Sun XY, Huang KM, et al., Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget. 2015;6(42):44179–44190. PMID: 26496034.
  • Yang X, Meng S, Jiang H, et al. Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats. J Surg Res. 2011;171(2):826–832. Epub 2010/06/08. PubMed PMID: 20828738. DOI:10.1016/j.jss.2010.05.021
  • Li X, Li JJ, Yang JY, et al., Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PLoS One. 2012;7(8):e44045. Epub 2012/08/29. PubMed PMID: 22952868; PMCID: PMC3430614. DOI:10.1371/journal.pone.0044045
  • Cai Z, Zhang W, Yang F, et al., Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 2012;22(3):607–610. Epub 2011/12/13. PubMed PMID: 22157651; PMCID: PMC3292292. DOI:10.1038/cr.2011.196
  • Alonso R, Mazzeo C, Rodriguez MC, et al., Diacylglycerol kinase α regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes. Cell Death Differ. 2011;18(7):1161–1173. Epub 2011/01/21. PubMed PMID: 21252909; PMCID: PMC3131963. DOI:10.1038/cdd.2010.184
  • Hedlund M, Nagaeva O, Kargl D, et al. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 2011;6(2):e16899. Epub 2011/03/03. PubMed PMID: 21364924; PMCID: 3045385. DOI:10.1371/journal.pone.0016899
  • Busch A, Quast T, Keller S, et al. Transfer of T cell surface molecules to dendritic cells upon CD4+ T cell priming involves two distinct mechanisms. J Immunol. 2008;181(6):3965–3973. PubMed PMID: 18768851.
  • Xie Y, Zhang H, Li W, et al., Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol. 2010;185(9):5268–5278. Epub 2010/09/29. PubMed PMID: 20881190. DOI:10.4049/jimmunol.1000386
  • Ventimiglia LN, Alonso MA Biogenesis and function of T cell-derived exosomes. Front Cell Dev Biol. 2016;4:84. Epub 2016/08/17PubMed PMID: 27583248; PMCID: PMC4987406. DOI:10.3389/fcell.2016.00084
  • Bryniarski K, Ptak W, Jayakumar A, et al., Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol. 2013;132(1):170–181. Epub 2013/06/04. PubMed PMID: 23727037. DOI:10.1016/j.jaci.2013.04.048
  • Smyth LA, Ratnasothy K, Tsang JY, et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013;43(9):2430–2440. Epub 2013/07/15. PubMed PMID: 23749427. DOI:10.1002/eji.201242909
  • Xie Y, Zhang X, Zhao T, et al. Natural CD8⁺25⁺ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma. Biochem Biophys Res Commun. 2013;438(1):152–155. PMID: 23876314. DOI:10.1016/j.bbrc.2013.07.044
  • Liu Y, Gu Y, Cao X The exosomes in tumor immunity. Oncoimmunology. 2015;4(9):e1027472. PubMed PMID: 26405598; PMCID: PMC4570093. DOI:10.1080/2162402X.2015.1027472
  • Zhang X, Pei Z, Chen J, et al., Exosomes for Immunoregulation and Therapeutic Intervention in Cancer. J Cancer. 2016 25;7(9):1081–1087. PMID: 27326251. DOI:10.7150/jca.14866
  • Sáenz-Cuesta M, Mittelbrunn M, Otaegui D Editorial: novel clinical applications of extracellular vesicles. Front Immunol. 2015;6:381. Epub 2015/07/24. PubMed PMID: 26257745; PMCID: PMC4513568. DOI:10.3389/fimmu.2015.00381
  • Agarwal A, Fanelli G, Letizia M, et al. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol. 2014;5:555. Epub 2014/11/05. PubMed PMID: 25414702; PMCID: PMC4220709. DOI:10.3389/fimmu.2014.00555
  • Krzewski K, Coligan JE Human NK cell lytic granules and regulation of their exocytosis. Front Immunol. 2012;3:335. PubMed PMID: 23162553; PMCID: PMC3494098. DOI:10.3389/fimmu.2012.00335
  • Watzl C, Urlaub D Molecular mechanisms of natural killer cell regulation. Front Biosci (Landmark Ed). 2012;17:1418–1432. Epub 2012/01/01. PubMed PMID: 22201812.
  • Lettau M, Schmidt H, Kabelitz D, et al. Secretory lysosomes and their cargo in T and NK cells. Immunol Lett. 2007;108(1):10–19. Epub 2006/11/10. PubMed PMID: 17097742. DOI:10.1016/j.imlet.2006.10.001
  • Peters PJ, Geuze HJ, Van der Donk HA, et al. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 1989;19(8):1469–1475. PubMed PMID: 2789142. DOI:10.1002/eji.1830190819
  • Peters PJ, Borst J, Oorschot V, et al., Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med. 1991;173(5):1099–1109. PubMed PMID: 2022921; PMCID: PMC2118839.
  • Zhu L, Senthikumar K, Oh J, et al. The NK-derived exosomes enhance NK cell-based therapy to melanoma cancer. J Nucl Med. 2016;57(Supplement 2):1393.
  • Kaspar AA, Okada S, Kumar J, et al., A distinct pathway of cell-mediated apoptosis initiated by granulysin. J Immunol. 2001;167(1):350–356. PubMed PMID: 11418670.
  • Saini RV, Wilson C, Finn MW, et al. Granulysin delivered by cytotoxic cells damages endoplasmic reticulum and activates caspase-7 in target cells. J Immunol. 2011;186(6):3497–3504. Epub 2011/02/08. PubMed PMID: 21296981. DOI:10.4049/jimmunol.1003409
  • Ewen CL, Kane KP, Bleackley RC A quarter century of granzymes. Cell Death Differ. 2012;19(1):28–35. PubMed PMID: 22052191; PMCID: PMC3252830. DOI:10.1038/cdd.2011.153
  • Lieberman J Granzyme A activates another way to die. Immunol Rev. 2010;235(1):93–104. PubMed PMID: 20536557; PMCID: PMC2905780. DOI:10.1111/j.0105-2896.2010.00902.x
  • Keefe D, Shi L, Feske S, et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity. 2005;23(3):249–262. PubMed PMID: 16169498. DOI:10.1016/j.immuni.2005.08.001
  • Voskoboinik I, Whisstock JC, Trapani JA Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388–400. PubMed PMID: 25998963. DOI:10.1038/nri3839
  • Law RH, Lukoyanova N, Voskoboinik I, et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature. 2010;468(7322):447–451. PubMed PMID: 21037563. DOI:10.1038/nature09518
  • Reboul CF, Whisstock JC, Dunstone MA A new model for pore formation by cholesterol-dependent cytolysins. PLoS Comput Biol. 2014;10(8):e1003791. Epub 2014/08/21. PubMed PMID: 25144725; PMCID: PMC4140638. DOI:10.1371/journal.pcbi.1003791
  • Thiery J, Keefe D, Boulant S, et al., Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol. 2011;12(8):770–777. Epub 2011/06/19. PubMed PMID: 21685908; PMCID: PMC3140544. DOI:10.1038/ni.2050
  • Fan Z, Beresford PJ, Oh DY, et al. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell. 2003;112(5):659–672. PubMed PMID: 12628186.
  • Cullen SP, Brunet M, Martin SJ Granzymes in cancer and immunity. Cell Death Differ. 2010;17(4):616–623. PubMed PMID: 20075940. DOI:10.1038/cdd.2009.206
  • Martinvalet D, Dykxhoorn DM, Ferrini R, et al. Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell. 2008;133(4):681–692. PubMed PMID: 18485875; PMCID: PMC2840390. DOI:10.1016/j.cell.2008.03.032
  • Cullen SP, Martin SJ Mechanisms of granule-dependent killing. Cell Death Differ. 2008;15(2):251–262. Epub 2007/11/02. PubMed PMID: 17975553. DOI:10.1038/sj.cdd.4402244
  • Choi YH, Jin N, Kelly F, et al. Elevation of alanine aminotransferase activity occurs after activation of the cell-death signaling initiated by pattern-recognition receptors but before activation of cytolytic effectors in NK or CD8+ T cells in the liver during acute HCV infection. PLoS One. 2016;11(10):e0165533. Epub 2016/10/27. PubMed PMID: 27788241; PMCID: PMC5082795. DOI:10.1371/journal.pone.0165533
  • Lavrik IN, Krammer PH Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012;19(1):36–41. Epub 2011/11/11. PubMed PMID: 22075988; PMCID: PMC3252827. DOI:10.1038/cdd.2011.155
  • Anderson DH, Sawaya MR, Cascio D, et al., Granulysin crystal structure and a structure-derived lytic mechanism. J Mol Biol. 2003;325(2):355–365. Epub 2002/12/19. PubMed PMID: 12488100.
  • Okada S, Li Q, Whitin JC, et al. Intracellular mediators of granulysin-induced cell death. J Immunol. 2003;171(5):2556–2562. Epub 2003/08/21. PubMed PMID: 12928406.
  • Gamen S, Hanson DA, Kaspar A, et al. Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J Immunol. 1998;161(4):1758–1764. Epub 1998/08/26. PubMed PMID: 9712041.
  • Falschlehner C, Emmerich CH, Gerlach B, et al. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol. 2007; 39 (7–8): 1462–1475. Epub 2007/02/14. PubMed PMID: 17403612. DOI:10.1016/j.biocel.2007.02.007
  • Mincheva-Nilsson L, Baranov V Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin Cancer Biol. 2014;28:24–30. PMID: 24602822. DOI:10.1016/j.semcancer.2014.02.010
  • Lundholm M, Schröder M, Nagaeva O, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One. 2014;9(9):e108925. PMID: 25268476. DOI:10.1371/journal.pone.0108925
  • Reiners KS, Topolar D, Henke A, et al., Pogge von Strandmann E. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood. 2013;121(18):3658–3665. PMID: 23509156. DOI:10.1182/blood-2013-01-476606
  • Labani-Motlagh A, Israelsson P, Ottander U, et al., Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 2016;37(4):5455–5466. PMID: 26563374. DOI:10.1007/s13277-015-4313-2
  • Ashiru O, Boutet P, Fernández-Messina L, et al., Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70(2):481–489. PMID: 20068167. DOI:10.1158/0008-5472.CAN-09-1688
  • Ashiru O, López-Cobo S, Fernández-Messina L, et al. A GPI anchor explains the unique biological features of the common NKG2D-ligand allele MICA*008. Biochem J. 2013;454(2):295–302. PMID: 23772752. DOI:10.1042/BJ20130194
  • Hedlund M, Stenqvist AC, Nagaeva O, et al., Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;183(1):340–351. PMID: 19542445. DOI:10.4049/jimmunol.0803477
  • Tan L, Wu H, Liu Y, et al. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity. 2016;49(6):357–365. Epub 2016/06/03. PubMed PMID: 27259064. DOI:10.1080/08916934.2016.1191477
  • Fais S NK cell-released exosomes: natural nanobullets against tumors. Oncoimmunology. 2013;2(1):e22337. Epub 2013/03/14. PubMed PMID: 23482694; PMCID: 3583913. DOI:10.4161/onci.22337
  • Chaput N, Thery C Exosomes: immune properties and potential clinical implementations. Semin Immunopathol. 2011;33(5):419–440. Epub 2010/12/22. PubMed PMID: 21174094. DOI:10.1007/s00281-010-0233-9
  • Scottà C, Esposito M, Fazekasova H, et al. Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations. Haematologica. 2013;98(8):1291–1299. Epub 2012/12/14. PubMed PMID: 23242600; PMCID: PMC3729911. DOI:10.3324/haematol.2012.074088
  • Julich H, Willms A, Lukacs-Kornek V, et al. Extracellular vesicle profiling and their use as potential disease specific biomarker. Front Immunol. 2014;5:413. Epub 2014/09/01. PubMed PMID: 25225495; PMCID: PMC4150251. DOI:10.3389/fimmu.2014.00413
  • Kornek M, Lynch M, Mehta SH, et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology. 2012;143(2):448–458. Epub 2012/04/24. PubMed PMID: 22537612; PMCID: PMC3404266. DOI:10.1053/j.gastro.2012.04.031
  • Ellwanger JH, Crovella S, Dos Reis EC, et al. Exosomes are possibly used as a tool of immune regulation during the dendritic cell-based immune therapy against HIV-I. Med Hypotheses. 2016;95:67–70. Epub 2016/09/15. PubMed PMID: 27692171. DOI:10.1016/j.mehy.2016.09.005
  • Alvarez-Erviti L, Seow Y, Yin H, et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–345. Epub 2011/03/20. PubMed PMID: 21423189. DOI:10.1038/nbt.1807
  • Pusic KM, Pusic AD, Kraig RP Environmental enrichment stimulates immune cell secretion of exosomes that promote CNS myelination and may regulate inflammation. Cell Mol Neurobiol. 2016;36(3):313–325. Epub 2016/03/18. PubMed PMID: 26993508; PMCID: PMC4860060. DOI:10.1007/s10571-015-0269-4
  • Damo M, Wilson DS, Simeoni E, et al. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep. 2015;5:17622. PubMed PMID: 26631690; PMCID: PMC4668567. DOI:10.1038/srep17622
  • Kim SH, Bianco NR, Shufesky WJ, et al. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J Immunol. 2007;179(4):2242–2249. PubMed PMID: 17675485.
  • Ruffner MA, Kim SH, Bianco NR, et al. B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function. Eur J Immunol. 2009;39(11):3084–3090. PubMed PMID: 19757438; PMCID: PMC3075967. DOI:10.1002/eji.200939407
  • Bianco NR, Kim SH, Ruffner MA, et al. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 2009;60(2):380–389. PubMed PMID: 19180475; PMCID: PMC3491653. DOI:10.1002/art.24229
  • Schorey JS, Bhatnagar S Exosome function: from tumor immunology to pathogen biology. Traffic. 2008;9(6):871–881. Epub 2008/03/12. PubMed PMID: 18331451. DOI:10.1111/j.1600-0854.2008.00734.x
  • Li XL, Li H, Zhang M, et al., Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. J Neuroinflamm. 2016;13:8. Epub 2016/01/12. PubMed PMID: 26757900; PMCID: PMC4710023. DOI:10.1186/s12974-016-0475-0
  • Liu H, Gao W, Yuan J, et al., Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J Mol Cell Cardiol. 2016;91:123–133. Epub 2015/12/30. PubMed PMID: 26746143. DOI:10.1016/j.yjmcc.2015.12.028
  • Pitt JM, André F, Amigorena S, et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 2016;126(4):1224–1232. Epub 2016/04/01. PubMed PMID: 27035813; PMCID: PMC4811123. DOI:10.1172/JCI81137
  • Besse B, Charrier M, Lapierre V, et al., Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5(4):e1071008.doi: 10.1080/2162402X.2015.1071008. Epub 2015/08/12. PubMed PMID: 27141373; PMCID: PMC4839329.
  • Haney MJ, Zhao Y, Harrison EB, et al. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases. PLoS One. 2013;8(4):e61852. Epub 2013/04/19. PubMed PMID: 23620794; PMCID: PMC3631190. DOI:10.1371/journal.pone.0061852
  • Zhao Y, Haney MJ, Gupta R, et al. GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson’s disease mouse model. PLoS One. 2014;9(9):e106867. Epub 2014/09/17. PubMed PMID: 25229627; PMCID: PMC4167552. DOI:10.1371/journal.pone.0106867
  • Ohno S, Drummen GP, Kuroda M Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systemss. Int J Mol Sci. 2016;17(2):172. Epub 2016/02/06. PubMed PMID: 26861303; PMCID: PMC4783906. DOI:10.3390/ijms17020172
  • Wang R, Xu A, Zhang X, et al., Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway. Cell Mol Immunol. 2017;14(6):529–545. PubMed PMID: 27264687. DOI:10.1038/cmi.2016.23
  • Xu A, Freywald A, Xiang J Novel T-cell-based vaccines via arming polyclonal CD4(+) T cells with antigen-specific exosomes. Immunotherapy. 2016;8(11):1265–1269. PubMed PMID: 27993084. DOI:10.2217/imt-2016-0094
  • Mannan S Cancer vaccine clinical trials1. Immunotherapy. 2016;8(11):1263–1264. PubMed PMID: 27993086. DOI:10.2217/imt-2016-0126
  • Shah NN, Baird K, Delbrook CP, et al., Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015;125(5):784–792. PubMed PMID: 25452614; PMCID: PMC4311226. DOI:10.1182/blood-2014-07-592881
  • Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–2390. Epub 2013/12/19. PubMed PMID: 24345736. DOI:10.1016/j.biomaterials.2013.11.083
  • Zhuang X, Xiang X, Grizzle W, et al., Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–1779. Epub 2011/09/13. PubMed PMID: 21915101; PMCID: PMC3188748. DOI:10.1038/mt.2011.164