440
Views
82
CrossRef citations to date
0
Altmetric
Research Article

The Genus Gluconobacter and Its Applications in Biotechnology

, &
Pages 1-25 | Published online: 29 Sep 2008

REFERENCES

  • Abel, P. U., vonWoedtke, T., Schulz, B., Bergann T., and Schwock, A. 1999. Stability of immobilized enzymes as biosensors for continuous application in vitro and in vivo. J. Mol. Catalysis B. Enz., 7:93–100.
  • Aldercreutz, P., Holst, O., and Mattiasson, B. 1982. Oxygen supply to immobilized cells. II. Studies on a co-immobilized algae-bacteria preparation with in situ oxygen generation. Enz. Microb. Technol., 4:395–400.
  • Aldercreutz, P. and Mattiasson, B. 1982. Oxygen supply to immobilized cells. III. Oxygen supply by hemoglobin or emulsions of perfluorochemicals. Eur. J. Appl. Microbiol. Biotechnol., 16:165–170.
  • Ameyama et al. 1981. Existence of a novel prosthetic group, PQQ, in a membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEMS Micro. Letters, 130(2): 179–183.
  • Asai, T. 1968. Acetic Acid Bacteria. Classification and Biochemical Activities. University of Tokyo Press. ISBN: 68–24816.
  • Batzing, B. L. and Claus, G. W. 1973. Fine structural changes of Acetobacter suboxydans during growth in a defined medium. J.Bacteriol., 113:1455–1461.
  • Belly, R. T. and Claus, G. W. 1972. Effect of amino acids on the growth of Acetobacter suboxydans. Arch. Microbiol., 83:237–245.
  • Bertrand, G. 1904. Etude biochimique de la bacterie du sorbose. Ann.Chim.Phys., 3(8): 181–288.
  • Bleeg, H. S. and Christensen, F. 1982. Biosynthesis of ascorbate in yeast-purification of l-galactono-1.4–lactone oxidase with properties different from mammalian l-gulonolactone oxidase. Eur. J. Biochem., 127:391–396.
  • Bonomi, A., Augusto, E. F. P., Barbosa, N. S., and Mattos, M. N., Magossi, L. R., and Santos, A. L. 1993. Unstructured model proposal for the microbial oxidation of d-sorbitol to l-sorbose. J. Biotechnol., 31:39–59.
  • Boudrant, J. 1990. Microbial processes for ascorbic acid biosynthesis: a review. Enz. Micro. Technol., 12:322–329.
  • Brubaker, R. R. 1991. Factors promoting acute and chronic diseases caused by Yersiniae. Clinical Micro. Rev., 4(3):309–324.
  • Bulygina, E. S., Gulikova, O. M., Dikanskaya, E. M., Nerusov, A. I., Tourova, T. P., and Chumakov, K. M. 1992. Taxonomic studies of the genera Acidomonas, Acetobacter and Gluconobacter by 5S ribosomal RNA sequencing. J. Gen Micro., 138:2283–2286.
  • Buse, R., Onken, U., Qazi, G. N., Sharma, N., Parshad, R., and Verma, V. 1992. Influence of dilution rate and dissolved oxygen concentration on continuous keto acid production by Gluconobacter oxydans subsp. melanogenum. Enz. Micro. Technol., 14:1001–1006.
  • Claret, C., Bories, A., and Soucaille, P. 1992. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr. Microbiol., 25:149–155.
  • Claret, C., Salmon, J. M., Romieu, C., and Bories, A. 1994. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl. Microbiol. Biotechnol., 41:359–365.
  • Claus, G. W., Batzing, B. L., Baker, C. A., Goebel, E. M. 1975. Intracytoplasmic membrane formation and increased oxidation of glycerol during growth of Gluconobacter oxydans. J. Bacteriol., 123(3):1169–1183.
  • Daniel, R. M. 1970. The electron transport system of Acetobacter suboxydans with particular referebce to cytochrome o. Biochim. Biophys. Acta, 216(2):328–341.
  • De Ley, J. and Dochy, R. 1960. On the localization of oxidase systems in Acetobacter cells. Biochim. Biophys. Acta, 40:277–289.
  • De Ley, J. and Swings, J. 1984. Family VI, Acetobacteriaceae. Genus II, Gluconobacter. Bergeys’ Manual of Systematic Bacteriology.
  • Elenkov, D., Beshkov, V., and Mitov, S. 1989. Influence of product addition on the oxidation of d-sorbitol to l-sorbose by the strain Acetobacter suboxydans. Biocatalysis, 2:283–292.
  • Flickinger, M. C. and Perlman, D. 1977. Application of oxygen enriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl. Env. Microbiol., 33:706–712.
  • Florent, J. 1986. Vitamins. In: Biotechnology: A Comprehensive Treatise. Rehm.H-J, Reed.G. (Eds). Weinheim; Deerfield Beach, FL:VCH Vol. 4 ISBN: 3–527–25764–0.
  • Fluckiger, J. and Ettlinger, L. 1977. Glucose metabolism in Acerobacter aceti. Arch. Microbiol., 114:183–187.
  • Gibson, T. D. 1999. Biosensors: The stability problem. Analusis, 27(7):630–638.
  • Greenfield, S. and Claus,G. W. 1972. Non-functional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J. Bacteriol., 112(3):1295–1301.
  • Hauge, J. G., King, T. E., and Cheldelin, V. H. 1955. Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J. Biol. Chem., 214:11–26.
  • Heefner, D. L. and Claus, G. W. 1976. Change in quantity of lipids and cell size during intracytoplasmic membrane formation in Gluconobacter oxydans. J. Bacteriol. 125:1163–1171.
  • Heick, H. M., Graff, G. L. A., and Humpers, J. E. C. 1972. The occurrence of ascorbic acid among yeasts. J. Microbiol., 18:597–600.
  • Holst, O., Lundback, H., and Mattiasson, B. 1984. Oxygen supply to immobilized cells using hydrogen peroxide. Ann. N. Y. Acad. Sci., 434:472–474.
  • Holst, O., Lundback, H., and Mattiasson, B. 1985. Hydrogen peroxide as an oxygen source for immobilised Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl. Microbiol. Biotechnol. 22(1):383–388.
  • Isono, M., Nakanashi, I., Sasajima, K-I., Motzuki, K., Kanazaki, I., Okazaki, H., and Yoshino, H. 1968. 2–Keto-l-gulonic acid fermentation. Part I. Paper chromatography characterization of metabolic products from sorbitol and sorbose by various bacteria. Agric. Biol. Chem., 35(4):424–431.
  • Kersters, K. and de Ley, J. 1966. Polyol dehydrogenases of Gluconobacter. Methods Enz., 9:170–177.
  • King, T. E. and Cheldelin, V. H. 1958. Multiple pathways of glucose oxidation in Acetobacter suboxydans. Biochem. J., 68:31P-32P.
  • Kitamura, I. and Perlman, D. 1975a. Metabolism of l-sorbose by enzymes of Gluconobacter melanogenus IFO 3293. Eur. J. Appl. Microbiol., 2:1–7.
  • Kitamura, I. and Perlman, D. 1975b. Conversion of l-sorbose to l-sorbosone by Gluconobacter melanogenus. Biotechnol. Bioeng., 17:349–359.
  • Kulhanek, M. 1970. Fermentation process employed in vitamin C synthesis. Adv. Appl. Microbiol., 12:11–30.
  • Kulhanek, M. 1989. Microbial dehydrogenations of monosaccharides. Adv. Appl. Microbiol., 34:141–182.
  • Leisinger, T. 1965. Untersuchungen zu systematik und stoffwechsel der essigsaurebakterien. Zbl. Bakt. 2. Abt., 119:329–376.
  • Lusta, K, A. and Reshetilov, A. N. 1998. Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems (Review). Appl. Biochem. Microbiol., 34(4):307–320.
  • Masai, H. 1980. Shokusu no aji. (Japanese). Nippon Jozo Kyokai Zasshi, 75:888–891.
  • Matsushita, K., Nagatani, Y-I., Shiagawa, E., Adachi, O., and Ameyama, M. 1989. Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans. Agric. Biol. Chem., 53:2895.
  • Matsushita, K., Toyama, H., and Adachi, O. 1994. Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microbial. Tech, 36:247–301.
  • Mattiasson, B. and Aldercreutz, P. 1983. Use of perfluorochemicals for oxygen supply to immobilized cells. Ann. N. Y. Acad. Sci., 413:545–547.
  • Mori, H., Kobayashi, T., and Shimizu, S. 1981. Highdensity production of sorbose from sorbitol by fed-batch culture with D.O. stat. J. Chem. Eng. Jpn., 14:65–70.
  • Murakawa, S., Sano, S., Yamashita, H., and Takahashi, T. 1977. Biosynthesis of d-erythroascorbic acid by Candida. Agric. Biol. Chem., 41:1799–1800.
  • Neijssel, O. M., Hommes, R. W. J., Postma, P. W., and Tempest, D. W. 1989. Physiological significance and bioenergetic aspects of glucose dehydrogenase. Antonie van Leeuwenhoek, 56:51–60.
  • Nishikimi, M., Noguchi, E., Yagi, K. 1980. Redox properties of l-galactonolactone oxidase purified from bakers yeast. Biochem. Int., 1(2): 155–161.
  • Ohrem, H. L., VOSS, H. 1995a. Inhibitory effects of dihydroxyacetone on Gluconobacter cultures. Biotech. Lett., 17(9):981–984.
  • OHREM, H. L. and Voss, H. 1995b. Kinetics of polyol oxidation with Gluconobacter oxydans. Biotech. Lett., 17(11): 1195–1200.
  • Olijve, W. and Kok, J. J. 1979. An analysis of the growth of Gluconobacter oxydans in chemostat cultures. Arch. Microbiol., 121:291–297.
  • Oosterhuis, N. M. G., Groesbeek, N. M., Kossen, N. W. F., Schenk, E. S. 1985. Influence of dissolved oxygen kinetics of Gluconobacter oxydans. Appl. Microbiol. Biotechnol., 21:42–49.
  • Perlman, D. 1979. Microbial Technology. Pepplar, H.J. and Perlman, D., Eds) 2nd Ed., Vol. II, Academic Press ISBN: 0–12–551502–2.
  • Pomortseva, N. V. and Krasil’Nikova, T. N. 1988. Effect of mannitol on microbiological oxidation of sorbitol to sorbose. Pharm. Chem. J., 12:1044–1047.
  • Pomortseva, N. V., Solov’Eva, K. A., Krasil’Nikova, T. N., and Suvorova, E. E. 1983. Oxidation of sorbitol to sorbose by resting cells. Appl. Biochem. Microbiol., 19(2):205–209.
  • Pronk, J. T., Levering, P. R., Olijve, W., van Dijken, J. P. 1989. Role of NADP dependant and quinoprotein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans. Enz. Micobial Tech., 11:160–164.
  • Rainbow, C. and Rose, A. H. (Eds) 1963. Biochemistry of Industrial Microorganisms: Miscellaneous Oxidative Transformations (A.N. HALL). Academic Press, London, 17:607–612.
  • Reshetilov, A. N. 1996. Models of biosensors based on principles of potentiometric and amperometric transducers: use in medicine, biotechnology and environmental monitoring (Review). Appl. Biochem. Microbiol., 32(1):78–93.
  • Reshetilov, A. N., Donova, M. V., Dovbnya, D. V., Il’Yasov, P. V., Boronin, A. M., Leasers, T., and Green, R. 1998. Membrane-bound dehydrogenases of Gluconobacter oxydans: sensors for measuring sugars, alcohols and polyoles. Bull. Exp. Biol. Med., 126(7):702–704.
  • Rosenberg, M., Svitel, J., Rosengerova, I., Sturdik, E. 1993. Optimization of sorbose production from sorbitol by Gluconobacter oxydans. Acta Biotech., 35(3):269–274.
  • Saeki, A. 1993. Application of Gluconobacter oxydans subsp. sphaericus IFO 12467 to vinegar production. J. Ferm. Bioeng., 75(3):232–234.
  • Saito, Y. et al. 1997. Cloning of genes coding for the l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2–keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl. Env. Micro., 63(2):454–460.
  • Shinagawa, E., Matsushita, K., Toyama, H., Adachi, O. 1999. Production of 5–keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependant membrane-bound d-gluconate dehydrogenase. J. Mol. Catalysis B: Enz., 6:341–350.
  • Shinjoh, M., Tomiyama, N., Asakura, A., Hoshino, T. 1995. Cloning and nucleotide sequencing of the mebrane-bound l-sorbosone dehydrogenase of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans. Appl. Env. Micro., 61(2):413–420.
  • Sievers, M., Gaberthuel, C., Boesch, C., Ludwig, W., and Teuber, M. 1995. Phylogenetic position of Gluconobacter species as a coherent cluster separated from all Acetobacter species on the basis of 16S ribosomal RNA sequences. FEMS Micro. Lett., 126:123–126.
  • Smolander, M., Cooper, J., Schuhmann, W., Hammerlre, M., and Schmidt, H-L. 1993. Determination of xylose and glucose ina flow-injection system with PQQ-dependent aldose dehydrogenase. Anal. Chim. Acta, 280(1):119–127.
  • Sriram, G. and Sureshkumar, G. K. 2000. Mechanism of oxygen availability from hydrogen peroxide to aerobic cultures of Xanthomonas campestris. Biotechnol. Bioeng., 67(4):487–492.
  • Srivastava, A. K. and Giridhar, R. 1998. Representation of culture transition states in A. suboxydans. J. Chem. Tech. Biotech., 73(1):23–30.
  • Srivastava, A. K., Lasrado, P. R. 1998. Fed-batch sorbitol to sorbose fermentation by A. suboxydans. Bioprocess Eng., 18(6):457–461.
  • Stefanova, S., Koseva, M., Tepavicharova, I., and Beshkov, V. 1987. l-sorbose production by cells of the strain Gluconobacter suboxydans entrapped in a polyacrylamide gel. Biotechnol. Lett., 9(7):475–477.
  • Sugisawa, T. et al. 1990. Microbial production of 2–keto-l-gulonic acid from l-sorbose and d-sorbitol by Gluconobacter melanogenus. Agric. Biol. Chem., 54(5):1201–1209.
  • Sugisawa, T., Ojima, S., Matzinger, P. K., and Hoshino, T. 1995. Isolation and characterization of a new vitamin C producing enzyme (l-gulono-γ-lactone-dehydrogenase) of bacterial origin. Biosci. Biotech. Biochem., 59(2):190–196.
  • Takagi Y. 1962. Reduction of 5–keto-d-gluconic acid to l-idonic acid by Fusarium species. Agric. Biol. Chem., 26(10):717–718.
  • Takeda, Y. and Shimizu, T. 1991. Cloning and sequencing of the gene encoding cytochrome c-553 (CO) from Gluconobacter suboxydans. J. Ferm. Bioeng., 72(1): 1–6.
  • Tanaka, M., Murakami, S., Shinke, R., and Aoki, K. 1999. Reclassification of the strains with low G + C contents of DNA belonging to the genus Gluconobacter ASAI 1935 (Acetobacteraceae). Biosci. Biotech. Biochem., 63(6):989–992.
  • de Taxis du Poet, P., Arcand, Y., and Bernier, R. 1987. Plasmid stability in immobilized and free recombinant E. coli. Importance of oxygen diffusion, growth rate and plasmid copy number. Appl. Env. Micro., 53:1548–1555.
  • Trager, M., Qazi, G. N., Buse, R., Onken, U. 1992. Comparison of direct glucose oxidation by Gluconobacter oxydans subsp. suboxydans and Aspergillus niger in a pilot scale air lift reactor. J. Ferm. Bioeng., 74(5):274–281.
  • Tramper, J., Luyben, K., and van der Tweel, W. J. J. 1983. Kinetic aspects of glucose oxidation by Gluconobacter oxydans cells immobilized in calcium alginate. Eur. J. Appl. Miro., 17:13–18.
  • Vandamme, E. J. 1992. Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J. Chem. Tech. Biotechnol. 53:313–327.
  • Verma, V., Qazi, P., Cullum, J., and Qazi, G. N. 1997. Genetic heterogeneity among keto-acid-producing strains of Gluconobacter oxydans. World J. Micro. Biotech., 13(3):289–294.
  • Wethmar, M. and Deckwer, W-D. 1999. Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans. Biotech. Tech., 13:283–287.
  • White, S. A. and Claus, G. W. 1982. Effect of intracytoplasmic membrane development on oxidation of sorbitol and other polyols by Gluconobacter oxydans. J. Bact., 150(2):934–943.
  • Yamada, Y., Aida, K., and Uemura, T. 1968. Distribution of ubiquinone 10 and 9 in acetic acid bacteria and its relation to the classification of genera Gluconobacter and Acetobacter, especially the so-called intermediate strains. Agric. Biol. Chem., 32(6):786–788.
  • Yamada, S., Wada, M., Chibata, I. 1978a. Oxygen transfer in shaken flask cultures and the conversion of sorbitol to sorbose by Acetobacter suboxydans. J. Ferm. Tech., 56(1):20–28.
  • Yamada, S., Wada, M., and Chibata, I. 1978b. Effect of high oxygen partial pressure on the conversion of sorbitol to sorbose by Acetobacter suboxydans. J. Ferm. Tech., 56(1):29–34.
  • Yamada, S., Wada, M., and Chibata, I. 1979. Oxygen transfer as a parameter of automatic control of the continuous cultivation for the conversion of sorbitol to sorbose by Gluconobacter suboxydans. J. Ferm. Tech., 57(3):210–214.
  • Yamazki, M. 1954. Production of vitamin C by fermentation. Part 7. Production of Ca-5–keto-gluconate by shaking culture. J. Agric. Chem. Soc. Jap., 28:890–896.
  • Yuan, Z. Y., Wei, D. Z., Yin, G. L., and Yuan, W. K. 1992. Coimmobilization of Gluconobacter oxydans and Bacillus cereus for bioconversion of 2–keto-l-gulonic acid. Ann. New York Acad. Sci., 672:628–633.
  • Zinsheng, Y. et al. 1981. Studies on production of vitamin C precursor- 2–keto-l-gulonic acid from l-sorbose by fermentation. II. Conditions for submerged fermentation of 2–keto-l-gulonic acid. Acta Microbiol. Sin., 21:185–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.