40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Central composite design augmented quality-by-design-based systematic formulation of erlotinib hydrochloride-loaded chitosan-poly (lactic-co-glycolic acid) nanoparticles

ORCID Icon, ORCID Icon & ORCID Icon
Pages 427-447 | Received 26 Dec 2023, Accepted 21 Mar 2024, Published online: 09 May 2024

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics. CA Cancer J Clin. 2023;73(1):17–48. doi:10.3322/caac.21763
  • Nijhawan HP, Prabhakar B, Misra A, et al. Fragmented antibodies in non-small-cell lung cancer: a novel nano-engineered delivery system for detection and treatment of cancer. Drug Discov Today 2023;28(11):103701–103701. doi:10.1016/j.drudis.2023.103701
  • Chen C, Akerstrom V, Baus J, et al. Comparative analysis of the transduction efficiency of five adeno associated virus serotypes and VSV-G pseudotype lentiviral vector in lung cancer cells. Virol J. 201;10:86. doi:10.1186/1743-422X-10-86
  • Houston KA, Henley SJ, Li J, et al. Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004–2009. Lung Cancer. 2014;86(1):22–28. doi:10.1016/j.lungcan.2014.08.001
  • Ohgino K, Soejima K, Yasuda H, et al. Expression of fibroblast growth factor 9 is associated with poor prognosis in patients with resected non-small-cell lung cancer. Lung Cancer. 2014;83(1):90–96. doi:10.1016/j.lungcan.2013.10.016
  • Zhao N, Zhang XC, Yan H, et al. Efficacy of epidermal growth factor receptor inhibitors versus chemotherapy as second-line treatment in advanced non-small-cell lung cancer with wild-type EGFR: a meta-analysis of randomized controlled clinical trials. Lung Cancer. 2014;85(1):66–73. doi:10.1016/j.lungcan.2014.03.026
  • Chen H, Zhou X, Gao Y, et al. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today 2014;19(4):502–509. doi:10.1016/j.drudis.2014.01.010
  • Cataldo VD, Gibbons DL, Pérez-Soler R, et al. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med. 2011;364(10):947–955. doi:10.1056/NEJMct0807960
  • Yang KM, Shin IC, Park JW, et al. Nanoparticulation improves bioavailability of Erlotinib. Drug Dev Ind Pharm. 2017;43(9):1557–1565. doi:10.1080/03639045.2017.1326931
  • Soulieres D, Senzer NN, Vokes EE, et al. Multicenter Phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22(1):77–85. doi:10.1200/JCO.2004.06.075
  • Marchetti S, De Vries NA, Buckle T, et al. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther. 2008;7(8):2280–2287. doi:10.1158/1535-7163.MCT-07-2250
  • Bakhtiary Z, Barar J, Aghanejad A, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small-cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244–1253. doi:10.1080/03639045.2017.1310223
  • Mandal B, Mittal NK, Balabathula P, et al. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small-cell lung cancer. Eur J Pharm Sci. 2016;81:162–171. doi:10.1016/j.ejps.2015.10.021
  • Shiena K, Yamamoto H, Soh J, et al. Drug resistance to EGFR tyrosine kinase inhibitors for non-small-cell lung cancer. Acta Med Okayama. 2014;68(4):191–200. doi:10.18926/AMO/52785
  • Rodríguez F, Caruana P, De la Fuente N, et al. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules. 2022;12(6):784. doi:10.3390/biom12060784
  • Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14. doi:10.1016/j.nano.2012.05.013
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel. 2001;70(1–2):1–20. doi:10.1016/s0168-3659(00)00339-4
  • Hami Z. A brief review on advantages of nano-based drug delivery systems. Ann Mil Heal Sci Res. 2021;19(1):112274. doi:10.5812/amh.112274
  • Raut H, Jadhav C, Shetty K, et al. Sorafenib tosylate novel drug delivery systems: implications of nanotechnology in both approved and unapproved indications. OpenNano. 2022;8:100103. doi:10.1016/j.onano.2022.100103
  • Fulfager AD, Yadav KS. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J Drug Deliv Sci Technol. 2021;62:102405. doi:10.1016/j.jddst.2021.102405
  • Roney C, Kulkarni P, Arora V, et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer's disease. J Control Rel. 2005;108(2–3):193–214. doi:10.1016/j.jconrel.2005.07.024
  • Zielinska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. doi:10.3390/molecules25163731
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Rel. 2012;161(2):505–522. doi:10.1016/j.jconrel.2012.01.043
  • Joshi G, Sharma V, Saxena R, et al. Polylactic coglycolic acid (PLGA)-based green materials for drug delivery. In: Shakeel Ahmed, editor. Applications of Advanced Green Materials. Cambridge (UK): Woodhead Publishing; 2020. 425–440.
  • Wu XS, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed. 2001;12(1):21–34. doi:10.1163/156856201744425
  • D'Angelo I, Quaglia F, Ungaro F. PLGA carriers for inhalation: where do we stand, where are we headed? Ther Deliv. 2015;6(10):1139–1144. doi:10.4155/tde.15.37
  • Elbatanony RS, Parvathaneni V, Kulkarni NS, et al. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small-cell lung cancer (NSCLC)-development and in-vitro efficacy. Drug Deliv Transl Res. 2021;11(3):927–943. doi:10.1007/s13346-020-00802-8
  • Vaidya B, Parvathaneni V, Kulkarni NS, et al. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small-cell lung cancer. Int J Biol Macromol. 2019;122:338–347. doi:10.1007/s13346-020-00802-8
  • Vega E, Gamisans F, García ML, et al. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97(12):5306–5317. doi:10.1002/jps.21383
  • Wu J, Deng C, Meng F, et al. Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. J Control Rel. 2017;259:76–82. doi:10.1016/j.jconrel.2016.12.024
  • Allison SD. Analysis of initial burst in PLGA microparticles. Expert Opin Drug Deliv. 2008;5(6):615–628. doi:10.1517/17425247.5.6.615
  • Rodrigues de Azevedo C, von Stosch M, Costa MS, et al. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm. 2017;532(1):229–240. doi:10.1016/j.ijpharm.2017.08.118
  • Shen H, Hu X, Bei J, et al. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials. 2008;29(15):2388–2399. doi:10.1016/j.biomaterials.2008.02.008
  • Wu J, Zhang J, Deng C, et al. Vitamin E-Oligo(methyl diglycol l-glutamate) as a biocompatible and functional surfactant for facile preparation of active tumor-targeting PLGA nanoparticles. Biomacromolecules. 2016;17(7):2367–2374. doi:10.1021/acs.biomac.6b00380
  • Lu B, Lv X, Le Y. Chitosan-modified PLGA nanoparticles for control-released drug delivery. Polymers (Basel). 2019;11(2):304. doi:10.3390/polym11020304
  • Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech. 2013;14(2):585–592. doi:10.1208/s12249-013-9943-3
  • Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed. 2006;1(2):117. doi:10.2147/nano.2006.1.2.117
  • Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm. 2010;399(1–2):1–11. doi:10.1016/j.ijpharm.2010.08.022
  • Gibot L, Chabaud S, Bouhout S, et al. Anticancer properties of chitosan on human melanoma are cell line dependent. Int J Biol Macromol. 2015;72:370–379. doi:10.1016/j.ijbiomac.2014.08.033
  • Mundargi RC, Babu VR, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Rel. 2008;125(3):193–209. doi:10.1016/j.jconrel.2007.09.013
  • Xu B, Jiang G, Yu W, et al. Preparation of poly(lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin. Mater Sci Eng C Mater Biol Appl. 2017;78:420–428. doi:10.1016/j.msec.2017.04.113
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Rel. 2004;100(1):5–28. doi:10.1016/j.jconrel.2004.08.010
  • Radwan R, Abdelkader A, Fathi HA, et al. Development and evaluation of letrozole-loaded hyaluronic acid/chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles. J Pharm Innov. 2022;17(2):572–583. doi:10.1007/s12247-021-09538-5
  • Dangi RS, Shakya S. Preparation, optimization and characterization of PLGA nanoparticle. Int J Pharm Life Sci. 2013;4(7):2810–2818.
  • Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments”. Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22(1):27–105. doi:10.1615/critrevtherdrugcarriersyst.v22.i3.10
  • Vora C, Patadia R, Mittal K, et al. Risk based approach for design and optimization of stomach specific delivery of rifampicin. Int J Pharm. 2013;455(1–2):169–181. doi:10.1016/j.ijpharm.2013.07.043
  • Soni G, Yadav KS, Gupta MK. Design of experiments (DoE) approach to optimize the sustained release microparticles of gefitinib. Curr Drug Deliv. 2019;16(4):364–374. doi:10.2174/1567201816666181227114109
  • Yu LX, Amidon G, Khan MA, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771. doi:10.1208/s12248-014-9598-3
  • Gasparini G, Kosvintsev SR, Stillwell MT, et al. Preparation and characterization of PLGA particles for subcutaneous controlled drug release by membrane emulsification. Colloids Surf B Biointerf. 2008;61(2):199–207. doi:10.1016/j.colsurfb.2007.08.011
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377. doi:10.3390/polym3031377
  • Verma P, Yadav KS. Quality by Design (QbD) enabled and Box-Behnken design assisted approach for formulation of tranexamic acid loaded stratum corneum lipid liposomes. J Drug Deliv Sci Technol. 2023;86:104571. doi:10.1016/j.jddst.2023.104571
  • Verma P, Yadav KS. Novel formulations for topical delivery of tranexamic acid: assessing the need of epidermal targeting for hyperpigmentation disorders. Expert Opin Drug Deliv. 2023;20(6):773–783. doi:10.1080/17425247.2023.2206645
  • Panigrahi D, Sahu PK, Swain S, et al. Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. SN Appl Sci. 2021;3(6):1–21. doi:10.1007/s42452-021-04609-1
  • Fahmy R, Kona R, Dandu R, et al. Quality by design I: application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. AAPS PharmSciTech. 2012;13(4):1243–1254. doi:10.1208/s12249-012-9844-x
  • Beg S, Saini S, Bandopadhyay S, et al. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of Olmesartan medoxomil employing multivariate statistical techniques. Drug Dev Ind Pharm. 2018;44(3):407–420. doi:10.1080/03639045.2017.1395459
  • Pal RR, Parashar P, Singh I, et al. Tamanu oil potentiated novel sericin emulgel of levocetirizine: repurposing for topical delivery against DNCB-induced atopic dermatitis, QbD based development and in vivo evaluation. J Microencapsul. 2019;36(5):432–446. doi:10.1080/02652048.2019.1637474
  • Gazori T, Khoshayand MR, Azizi E, et al. Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym. 2009;3(77):599–606. doi:10.1016/j.carbpol.2009.02.019
  • Soni G, Yadav KS, Gupta MK. QbD based approach for formulation development of spray dried microparticles of erlotinib hydrochloride for sustained release. J Drug Deliv Sci Technol. 2020;57:01684. doi:10.1016/j.jddst.2020.101684
  • Bhargave H, Nijhawan H, Yadav KS. PEGylated erlotinib HCl injectable nanoformulation for improved bioavailability. AAPS PharmSciTech. 2023;24(4):101. doi:10.1208/s12249-023-02560-5
  • Song X, Zhao Y, Hou S, et al. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm. 2008;69(2):445–453. doi:10.1016/j.ejpb.2008.01.013
  • Yadav KS, Raut HC, Nijhawan HP. Inhalable spray-dried polycaprolactone-based microparticles of Sorafenib Tosylate with promising efficacy on A549 cells. Pharm Dev Technol. 2023;28(8):755–767. doi:10.1080/10837450.2023.2251148
  • Esmaeili F, Atyabi F, Dinarvand R. Preparation of PLGA nanoparticles using TPGS in the spontaneous emulsification solvent diffusion method. J Exp Nanosci. 2007;2(3):183–192. doi:10.1080/17458080701393137
  • Yadav KS, Sawant KK. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech. 2010;11(3):1456. doi:10.1208/s12249-010-9519-4
  • Yadav K, Sawant K. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr Drug Deliv. 2010;7(1):51–64. doi:10.2174/156720110790396517
  • Alimohammady M, Jahangiri M, Kiani F, et al. Highly efficient simultaneous adsorption of Cd(II), Hg(II) and As(III) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: central composite design optimization. New J Chem. 2017;41(17):8905–8919. doi:10.1039/C7NJ01450C
  • Soni G, Yadav KS. Fast-dissolving films of sumatriptan succinate: factorial design to optimize in vitro dispersion time. J Pharm Innov. 2015;10(2):166–174. doi:10.1007/s12247-015-9217-6
  • Ghafari S, Aziz HA, Isa MH, et al. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater. 2009;163(2–3):650–656. doi:10.1016/j.jhazmat.2008.07.090
  • Verma P, Singh RK, Wadhwa A, et al. Bimatoprost-loaded lipidic nanoformulation development using quality by design: liposomes versus solid lipid nanoparticles in intraocular pressure reduction. Nanomedicine (Lond). 2023;18(25):1815–1837. doi:10.2217/nnm-2023-0141
  • Sadeghi-Avalshahr A, Nokhasteh S, Molavi AM, et al. Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regen Biomater. 2017;4(5):309–314. doi:10.1093/rb/rbx026
  • Queiroz MF, Melo KRT, Sabry DA, et al. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs. 2014;13(1):141–158. doi:10.3390/md13010141
  • Ferrero F, Periolatto M. Antimicrobial finish of textiles by chitosan UV-curing. J Nanosci Nanotechnol. 2012;12(6):4803–4810. doi:10.1166/jnn.2012.4902
  • Chronopoulou L, Massimi M, Giardi MF, et al. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids Surfaces B Biointerfaces. 2013;103:310–317. doi:10.1016/j.colsurfb.2012.10.063
  • Almoustafa HA, Alshawsh MA, Chik Z. Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic agents by nanoprecipitation method. Int J Pharm. 2017;533(1):275–284. doi:10.1016/j.ijpharm.2017.09.054
  • Yadav KS, Jacob S, Sachdeva G, et al. Long circulating PEGylated PLGA nanoparticles of cytarabine for targeting leukemia. J Microencapsul. 2011;28(8):729–742. doi:10.3109/02652048.2011.615949
  • Yadav KS, Jacob S, Sachdeva G, et al. Intracellular delivery of etoposide loaded biodegradable nanoparticles: cytotoxicity and cellular uptake studies. J Nanosci Nanotechnol. 2011;11(8):6657–6667. doi:10.1166/jnn.2011.4225
  • Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Rel. 1987;5(1):37–42. doi:10.1016/0168-3659(87)90035-6
  • Guideline, ICH Harmonised Tripartite. “Quality risk management”. Q9, Current step 4; 2005. p. 408.
  • Lotllikar MV. QUALITY RISK MANAGEMENT (QRM): A REVIEW. J Drug Deliv Ther. 2013;3(2):149. doi:10.22270/jddt.v3i2.447
  • Nair VN, Abraham B, MacKay J, et al. Taguchi's parameter design: a panel discussion. Technometrics. 1992;34(2):127. doi:10.1080/00401706.1992.10484904
  • Rao RS, Kumar CG, Prakasham RS, et al. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnol J. 2008;3(4):510–523. doi:10.1002/biot.200700201
  • Asfaram A, Ghaedi M, Agarwal S, et al. Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 2015;5(24):18438–18450. doi:10.1039/C4RA15637D
  • Dülmer H. The factorial survey: design selection and its impact on reliability and internal validity. Sociol Methods Res. 2016;45(2):304–347. doi:10.1177/0049124115582269
  • Zendehboudi A, Li X. Desiccant-wheel optimization via response surface methodology and multi-objective genetic algorithm. Energy Convers Manag. 2018;174:649–660. doi:10.1016/j.enconman.2018.07.078
  • Kilickap E. Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Syst Appl. 2010;37(8):6116–6122. doi:10.1016/j.eswa.2010.02.023
  • Nwobasi VN, Igbokwe PK, Onu CE. Optimization of acid activated Ngbo clay catalysts in esterification reaction using response surface methodology. Asian J Phys Chem Sci. 2022;10(1):11–27. doi:10.9734/ajopacs/2022/v10i130147
  • Gan Q, Wang T, Cochrane C, et al. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44(2–3):65–73. doi:10.1016/j.colsurfb.2005.06.001
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–223. doi:10.1016/j.yexmp.2008.12.004
  • Cun D, Jensen DK, Maltesen MJ, et al. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. Eur J Pharm Biopharm. 2011;77(1):26–35. doi:10.1016/j.ejpb.2010.11.008
  • Kim MK, Ki DH, Na YG, et al. Optimization of mesoporous silica nanoparticles through statistical design of experiment and the application for the anticancer drug. Pharm. 2021;13(2):184. doi:10.3390/pharmaceutics13020184
  • Singh G, Pai RS. Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert Opin Drug Deliv. 2014;11(5):647–659. doi:10.1517/17425247.2014.890588
  • Jain GK, Pathan SA, Akhter S, et al. Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: influence of chitosan. Polym Degrad Stab. 2010;12(95):2360–2366. doi:10.1016/j.polymdegradstab.2010.08.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.