190
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic mechanical analysis of Scots pine and three tropical hardwoods

, , &
Pages 189-203 | Received 09 Dec 2019, Accepted 09 Jul 2020, Published online: 03 Aug 2020

References

  • Åkerholm M, Salmén L. 2001. Interaction between wood polymers studied by dynamic FT-IR spectroscopy. Polymer. 42:963–969. doi: 10.1016/S0032-3861(00)00434-1
  • Åkerholm M, Salmén L. 2003. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung. 57:459–465. doi: 10.1515/HF.2003.069
  • Åkerholm M, Salmén L. 2004. Softening of wood polymers induced by moisture studied by dynamic FTIR spectroscopy. J Appl Polym Sci. 94:2032–2040. doi: 10.1002/app.21133
  • Ashadduzaman M, Hale MD, Tverezovskiy V, Ormondroyd GA. 2013. Effect of bio-resin from cashew nut shell liquid (CNSL) on decay resistance properties of wood. IRG working paper, 44th Annual Meeting of the International Research Group on Wood Protection, Stockholm, Sweden, 16–20 June 2013. IRG/WP 13-40649, 15pp.
  • Back EL, Salmén L. 1982. Glass transitions of wood components hold implications for molding and pulping processes. TAPPI. 65(7):107–110.
  • Backman AC, Lindberg KAH. 2001. Differences in wood material responses for radial and tangential direction as measured by dynamic mechanical thermal analysis. J Mat Sci. 36:3777–3783. doi: 10.1023/A:1017986119559
  • Becker H, Noack D. 1968. Studies in dynamic torsional viscoelasticity of wood. Wood Sci Technol. 2:213–230.
  • Birkinshaw C, Buggy M, Henn GG. 1986. Dynamic mechanical analysis of wood. J Mater Sci Lett. 5:898–900. doi: 10.1007/BF01729266
  • Björkman A, Salmén L. 2000. Studies on solid wood. II The influence of chemical modifications on viscoelastic properties. Cellul Chem Technol. 34:7–20.
  • Carpita NC, Gibeaut DM. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3(1):1–30. doi: 10.1111/j.1365-313X.1993.tb00007.x
  • Cosgrove DJ, Jarvis MC. 2012. Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci. 3:204. doi:10.3389/fpls.2012.00204.
  • Ebrahimzadeh PR, Kubat DG. 1993. Effects of humidity changes on damping and stress relaxation in wood. J Mater Sci. 28:5668–5674. doi: 10.1007/BF00367845
  • Ebringerova A, Heinze T. 2000. Xylan and xylan derivatives – biopolymers with valuable properties, I, naturally occurring xylans, structures, isolation procedures and properties. Macromol Rapid Commun. 21(9):542–546. doi: 10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7
  • Engelund ET, Thygesen LG, Svensson S. 2013. A critical discussion of the physics of wood-water interactions. Wood Sci Technol. 47:141–161. doi: 10.1007/s00226-012-0514-7
  • Entwistle KM. 2005. Mechanosorptive effect in Pinus radiata D. Don. Holzforschung. 59:552–558. doi: 10.1515/HF.2005.091
  • Fabiyi JS, Fuwape JA, Olufemi B. 2011. Surface chemistry and thermos-mechanical analysis of some Nigerian wood species. Thermochim Acta. 524:80–87. doi: 10.1016/j.tca.2011.06.018
  • Gerhards CC. 1982. Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber. 14(1):4–36.
  • Hadi YS, Nurhayati T, Jasni YH, Kamiya N. 2012. Resistance of smoked wood to subterranean and dry-wood termite attack. Int Biodeterior Biodegrad. 70:79–81. doi: 10.1016/j.ibiod.2011.06.010
  • Havimo M. 2009. A literature-based study on the loss tangent of wood in connection with mechanical properties. Wood Sci Technol. 43:627–642. doi: 10.1007/s00226-009-0271-4
  • Heijboer J. 1977. Secondary loss peaks in glassy amorphous polymers. Int J Polym Mater. 6(1-20):11–37. doi: 10.1080/00914037708075218
  • Hoffman G, Poliszko S, Hilczer T. 1990. Model approach to dielectric – thermal analysis of wood modified with polymer. J Appl Polym Sci. 39(1):153–167. doi: 10.1002/app.1990.070390113
  • Holzer SM, Loferski JR, Dillard DA. 1989. A review of creep in wood: concepts relevant to develop long-term behaviour predictions for wood structures. Wood Fiber Sci. 21(4):376–392.
  • Horvath B, Peralta P, Frazier C, Peszlen I. 2011. Thermal softening of transgenic aspen. BioResources. 6(2):2125–2134.
  • Islam MS, Hamdan S, Jusoh I, Rahman MR, Ahmed AS. 2012a. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Mater Des. 33:419–424. doi: 10.1016/j.matdes.2011.04.044
  • Islam MS, Hamdan S, Talib ZA, Ahmed AS, Rahman MR. 2012b. Tropical wood polymer nanocomposite (WPNC): the impact of nanoclay on dynamic mechanical thermal properties. Compos Sci Technol. 72:1995–2001. doi: 10.1016/j.compscitech.2012.09.003
  • Jiang JL, Lu JX. 2008. Dynamic viscoelasticity of wood after various drying processes. Drying Technol. 26:537–543. doi: 10.1080/07373930801944671
  • Kelley SS, Rials TG, Glasser WG. 1987. Relaxation behaviour of the amorphous components of wood. J Mater Sci. 22(2):617–624. doi: 10.1007/BF01160778
  • Kim KY, Kim NH, Nishinari K. 1991. Dielectric and viscoelastic properties of cellulose derivatives. Carbohydr Polym. 16:189–198. doi: 10.1016/0144-8617(91)90102-I
  • Kulasinski K, Salmén L, Derome D, Carmeliet J. 2016. Moisture adsorption of glucomannan and xylan hemicelluloses. Cellulose. 23:1629–1637. doi: 10.1007/s10570-016-0944-8
  • Laine C. 2005. Structures of hemicelluloses and pectins in wood and pulp [Doctoral thesis]. Helsinki University of Technology.
  • Lavers GM. 1969. The strength properties of timbers. Forest Products Research Bulletin No 50, HMSO.
  • Li Z, Jiang J, Lu J. 2018. Moisture-dependent orthotropic viscoelastic properties of Chinese fir wood in low temperature environment. J Wood Sci. 64:515–525. doi: 10.1007/s10086-018-1738-4
  • Maeda H, Fukada E. 1987. Effect of bound water on piezoelectric, dielectric and elastic properties of wood. J Appl Polym Sci. 33:1187–1198. doi: 10.1002/app.1987.070330411
  • Menard KP, Menard KK. 2015. Dynamic mechanical analysis in the analysis of polymers and rubbers. In: Encyclopedia of polymer science and technology. Wiley. doi:10.1002/0471440264.pst102.pub2.
  • Montès H, Mazeau K, Cavaillé JY. 1997. Secondary mechanical relaxations in amorphous cellulose. Macromolecules. 30:6977–6984. doi: 10.1021/ma9611329
  • Nuopponen MH, Wikberg HI, Birch GM, Jääskeläinen A-S, Maunu SL, Vuorinen T, Stewart D. 2006. Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and 13C-NMR cross-polarization/magic-angle spinning spectroscopy. J Appl Polym Sci. 102:810–819. doi: 10.1002/app.24143
  • Obataya E, Norimoto M, Tomita B. 2001. Mechanical relaxation processes of wood in the low temperature range. J Appl Polym Sci. 81:3338–3347. doi: 10.1002/app.1790
  • Olsson AM, Salmén L. 1992. Viscoelasticity of in situ lignin as affected by structure softwood vs hardwood. ACS Symp Series USA. 489:133–149. doi: 10.1021/bk-1992-0489.ch009
  • Pettersen RC. 1984. The chemical composition of wood. In: Rowell R., editor. Chemistry of solid wood. ACS Advances in Chemistry Series 207; p. 57–126.
  • Placet V, Passard J, Perré P. 2007. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0–95°C: hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung. 61:548–557. doi: 10.1515/HF.2007.093
  • Roig F, Dantras E, Dandurand J, Lacabanne C. 2001. Influence of hydrogen bonds on glass transition and dielectric relaxations of cellulose. J Phys D – Appl Phys. 44(4):045403. doi: 10.1088/0022-3727/44/4/045403
  • Roig F, Ramanatsizehena G, Razafindramisa FL, Dantras E, Dandurand J, Hoyet H, Bernes A, Lacabane C. 2017. Dielectric and mechanical properties of various species of Madagascan woods. Wood Sci Technol. 51:1389–1404. doi: 10.1007/s00226-017-0936-3
  • Salmén L. 1984. Viscoelastic properties of in situ lignin under water saturated conditions. J Mater Sci. 19:3090–3096. doi: 10.1007/BF01026988
  • Salmén L, Burgert I. 2009. Cell wall features with regard to mechanical performance. A review. Holzforschung. 63:121–129. doi: 10.1515/HF.2009.011
  • Se Golpayegani A, Brémaud I, Gril J, Thevenon M-F, Arnould O, Pourtahmasi K. 2011. Effect of extractions on dynamic mechanical properties of white mulberry (Morus alba). J Wood Sci. 58:153–162. doi: 10.1007/s10086-011-1225-7
  • Sharma M, Brennan M, Chauhan SS, Entwistle KM, Altaner CM, Harris PJ. 2015. Wood quality assessment of Pinus radiata (radiata pine) saplings by dynamic mechanical analysis. Wood Sci Technol. 49:1239–1250. doi: 10.1007/s00226-015-0769-x
  • Shinouda HG, Moteleb MMA. 2005. Dielectric spectroscopy and relaxation phenomena of moistened and dry polysaccharides. J Appl Polym Sci. 98:571–582. doi: 10.1002/app.22021
  • Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler A-C, Brown SP, deAzevedo ER, Dupree R, Dupree P. 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun. 7:13902. doi:10.1038/ncomms13902.
  • Sjöström E. 1981. Wood chemistry: fundamentals and applications. New York: Academic Press.
  • Startsev OV, Makhonkov A, Erofeev V, Gudojnikov S. 2017. Impact of moisture content on dynamic mechanical properties and transition temperatures of wood. Wood Mat Sci Eng. 12(1):55–62. doi: 10.1080/17480272.2015.1020566
  • Startsev OV, Salin BN, Skuridin YG, Utemesov RM, Nasonov AD. 1999. Physical properties and molecular mobility of new wood composite plastic. Wood Sci Technol 33:73–83. doi: 10.1007/s002260050100
  • Sugiyama M, Norimoto M. 1996. Temperature dependence of dynamic viscoelasticities of chemically treated woods. Mokuzai Gakkaishi. 42(11):1049–1056.
  • Sugiyama M, Obataya E, Norimoto M. 1998. Viscoelastic properties of the matrix substance of chemically treated wood. J Mater Sci. 33:3505–3510. doi: 10.1023/A:1004678506822
  • Sun N, Das S, Frazier CE. 2007. Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes. Holzforschung. 61(1):28–33. doi: 10.1515/HF.2007.006
  • Turi. 1997. TA Thermal Solutions Sheet 62.
  • Wert CA, Weller M, Caulfield D. 1984. Dynamic loss properties of wood. J Appl Phys. 56:2453–2458. doi: 10.1063/1.334306
  • Zhan T, Jiang J, Lu J, Peng H. 2015. Dynamic viscoelastic properties o f Chinese fir under cyclical relative humidity variation. J Wood Sci. 61:465–473. doi: 10.1007/s10086-015-1491-x
  • Zhao H, Chen Z, Du X, Chen L. 2019. Contribution of different state of absorbed water to the sub-Tg dynamics of cellulose. Carbohydr Polym. 210:322–331. doi: 10.1016/j.carbpol.2019.01.087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.