77
Views
1
CrossRef citations to date
0
Altmetric
Articles

Benchmarking moisture prediction in kiln-dried Pacific Coast hemlock wood

, , &
Pages 219-226 | Received 15 Jun 2022, Accepted 15 Jul 2022, Published online: 29 Jul 2022

References

  • Abellan-Nebot JV, Subiron FR. 2010. A review of machining monitoring systems based on artificial intelligence process models. Int J Adv Manuf Technol. 47(1-4):237–257.
  • Avramidis S, Oliveira L. 1993. Influence of presteaming on kiln-drying of thick hem-fir lumber. For Prod J. 43(11/12):7–12.
  • Ayanleye S, Nasir V, Avramidis S, Cool J. 2021. Effect of wood surface roughness on prediction of structural timber properties by infrared spectroscopy using ANFIS, ANN, and PLS regression. Eur J Wood Wood Prod. 79(1):101–115.
  • Ayanleye S, Udele K, Nasir V, Zhang X, Militz H. 2022. Durability and protection of mass timber structures: a review. J Build Eng. 46:103731.
  • Bradic S. 2005. Impact of juvenile wood on the drying characteristics of Pacific Coast hemlock structural timber [M.Sc. Thesis] Vancouver (BC): University of British Columbia; p. 152.
  • Cabardo SJ. 2007. Variability in physical and transport properties regarding drying behavior for regrowth and plantation blackbutt timber in New South Wales. Ph.D. dissertation University of Sidney, South Wales, Australia, p. 109.
  • Cai L, Oliveira LC. 2004. Equalizing and conditioning spruce-pine-subalpine fir lumber. For Prod J. 54(12):126–131.
  • Ceylan I. 2008. Determination of drying characteristics of timber by using artificial neural networks and mathematical models. Drying Technol. 26(12):1469–1476.
  • Chen Y, Xu P, Chu Y, Li W, Wu Y, Ni L, Bao Y, Wang K. 2017. Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings. Appl Energy. 195(139):659–670.
  • Cronin KP, Abodayeh K, Caro-Corrales J. 2002. Probabilistic analysis and design of the industrial lumber drying process. Dry Technol. 20(2):307–324.
  • Cronin KP, Baucour P., Abodayeh K, Barbot Da Silva A. 2003. Probabilistic analysis of timber drying schedules. Dry Technol. 21(8):1435–1458.
  • Elustondo DM, Avramidis S. 2002. Stochastic numerical model for radio frequency vacuum drying of lumbers. Dry Technol. 20(9):1827–1842.
  • Elustondo DM, Avramidis S. 2005. Comparative analysis of three methods for stochastic lumber drying simulation. Dry Technol. 23(1-2):131–142.
  • Elustondo DM, Oliveira L. 2009. A method for optimizing lumber sorting before kiln-drying. For Prod J. 59(9):45–50.
  • Fathi H, Kazemirad S, Nasir V. 2020a. A nondestructive guided wave propagation method for the characterization of moisture-dependent viscoelastic properties of wood materials. Mater Struct. 53(6):1–14.
  • Fathi H, Nasir V, Kazemirad S. 2020b. Prediction of the mechanical properties of wood using guided wave propagation and machine learning. Constr Build Mater. 262:120848.
  • Fu Z, Avramidis S, Zhao J, Cai Y. 2017. Artificial neural network modeling for predicting elastic strain of white birch disks during drying. Eur J Wood and Wood Prod. 75(6):949–955.
  • Hao B, Avramidis S. 2004. Annual ring orientation effect and slope of grain in hemlock timber drying. For Prod J. 54(11): 41–49.
  • Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2(5):359–366.
  • Li M, Avramidis S, Oliveira LC, Hartley I. 1997. The effect of vertical air gaps, air velocities and fan revolutions on the drying characteristics of thick Pacific Coast hemlock lumber. Holzforschung. 51(4):381–387.
  • Masoudi S, Sima M, Tolouei-Rad M. 2018. Comparative study of ANN and ANFIS models for predicting temperature in machining. J Eng Sci Technol. 13(1):211–225.
  • Morris PI. 1995. Pacific silver fir is the more-treatable component of hem-fir from coastal British Columbia. For Prod J. 45(9):37.
  • Nasir V, Cool J. 2020a. Characterization, optimization, and acoustic emission monitoring of airborne dust emission during wood sawing. Int J Adv Manuf Technol. 109(9):2365–2375.
  • Nasir V, Cool J. 2020b. Intelligent wood machining monitoring using vibration signals combined with self-organizing maps for automatic feature selection. Int J Adv Manuf Technol. 108(5):1811–1825.
  • Nasir V, Cool J, Sassani F. 2019a. Intelligent machining monitoring using sound signal processed with the wavelet method and a self-organizing neural network. IEEE Rob Autom Lett. 4(4):3449–3456.
  • Nasir V, Cool J, Sassani F. 2019b. Acoustic emission monitoring of sawing process: artificial intelligence approach for optimal sensory feature selection. Int J Adv Manuf Technol. 102(9-12):4179–4197.
  • Nasir V, Fathi H, Kazemirad S. 2021. Combined machine learning–wave propagation approach for monitoring timber mechanical properties under UV aging. Struct Health Monit. 20(4):2035–2053.
  • Nasir V, Kooshkbaghi M, Cool J. 2020. Sensor fusion and random forest modeling for identifying frozen and green wood during lumber manufacturing. Manuf Lett. 26:53–58.
  • Nasir V, Kooshkbaghi M, Cool J, Sassani F. 2021. Cutting tool temperature monitoring in circular sawing: measurement and multi-sensor feature fusion-based prediction. Int J Adv Manuf Technol. 112(9):2413–2424.
  • Nasir V, Nourian S, Zhou Z, Rahimi S, Avramidis S, Cool J. 2019. Classification and characterization of thermally modified timber using visible and near-infrared spectroscopy and artificial neural networks: a comparative study on the performance of different NDE methods and ANNs. Wood Sci Technol. 53(5):1093–1109.
  • Nasir V, Sassani F. 2021. A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges. Int J Adv Manuf Technol. 115(9):2683–2709.
  • Nourian S. 2018. Thermal modification of western hemlock (Tsuga heterophylla) [M.Sc. Thesis]. Vancouver (BC): University of British Columbia; p. 72.
  • Oliveira LC, Wallace JW. 2001. Examining some drying/re-drying options for 105 mm × 105 mm green hem-fir lumber. Forintek Canada Corp. Report prepared for CFLA; p. 17.
  • Park YS, Lek S. 2016. Artificial neural networks: multilayer perceptron for ecological modeling. In: Sven Erik Jørgensen, editor. Developments in environmental modeling. Vol. 28. Elsevier; p. 123–140. https://doi.org/10.1016/B978-0-444-63623-2.00007-4.
  • Perre P. 2007. Fundamental wood drying. In: European COST. France: Nancy; p. 366.
  • Rahimi S, Avramidis S. 2022. Predicting moisture content in kiln dried timbers using machine learning. Eur J Wood Wood Prod. 80:681–692.
  • Rahimi S, Avramidis S, Lazarescu C. 2021. Estimating moisture content variation in kiln dried pacific coast hemlock. Holzforschung. DOI:10.1515/hf-2021-0080
  • Rahimi S, Faezipour M, Tarmian A. 2011. Drying of internal-check prone poplar lumber using three different conventional kiln drying schedules. J Indian Acad Wood Sci. 8(1):6–10.
  • Rahimi S, Nasir V, Avramidis S, Sassani F. 2021. Wood moisture monitoring and classification in kiln-dried timber. Struct Control Health. 29(4): e2911.
  • Sackey EK, Avramidis S, Oliveira LC. 2004. Exploratory evaluation of oscillation drying for thick hemlock timbers. Holzforschung. 58(4):428–433.
  • Rohrbach K. 2008. Schedule and post-drying storage effects on Western hemlock squares quality [M.Sc. Thesis] Vancouver (BC): University of British Columbia; p. 113.
  • Sablani SS, Kacimov A, Perret J, Mujumdar AS, Campo A. 2005. Noniterative estimation of heat transfer coefficients using artificial neural network models. Int J Heat Mass Transfer. 48(3-4):665–679.
  • Salas C, Moya R. 2014. Kiln-, solar-, and air-drying behavior of lumber of Tectona grandis and Gmelina arborea from fast-grown plantations: moisture content, wood color, and drying defects. Dry Technol. 32(3):301–310.
  • Schubert M, Luković M, Christen H. 2020. Prediction of mechanical properties of wood fiber insulation boards as a function of machine and process parameters by random forest. Wood Sci Technol. 54(3):703–713.
  • Shahverdi M. 2015. Kiln drying optimization for quality hem-fir lumber [M.Sc. Thesis]. Vancouver (BC): University of British Columbia; p. 91.
  • Shahverdi M, Oliveira L, Avramidis S. 2017. Kiln-drying optimization for quality pacific coast hemlock timber. Dry Technol. 35(15):1867–1873.
  • Siau JF. 1995. Wood: influence of moisture on physical properties. Blacksburg: Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University. p. 227.
  • Steinberg D. 2009. ‘CART: classification and regression trees. In: X Wu, V Kumar, editors. The top ten algorithms in data mining. Boca Raton (FL): CRC Press; p. 179–202.
  • Sugeno M. 1985. Industrial applications of fuzzy control. Amsterdam: Elsevier.
  • Van Blokland J, Nasir V, Cool J, Avramidis S, Adamopoulos S. 2021a. Machine learning-based prediction of internal checks in weathered thermally modified timber. Constr Build Mater. 281:122193.
  • Van Blokland J, Nasir V, Cool J, Avramidis S, Adamopoulos S. 2021b. Machine learning-based prediction of surface checks and bending properties in weathered thermally modified timber. Constr Build Mater. 307:124996.
  • Wada N. 2013. Internal moisture movement in hem-fir timbers exposed to ambient conditions following kiln drying [M.Sc. Thesis] Vancouver (BC): University of British Columbia; p. 65.
  • Watanabe K, Hayashi T, Kobayashi I. 2016. Probabilistic evaluation of the final moisture content of kiln-dried lumber using the bootstrap method. J Wood Sci. 62(6):479–486.
  • Watanabe K, Kobayashi I, Matsushita Y, Saito S, Kuroda N, Noshiro S. 2014. Application of near-infrared spectroscopy for evaluation of drying stress on lumber surface: a comparison of artificial neural networks and partial least squares regression. Dry Technol. 32(5):590–596.
  • Watanabe K, Matsushita Y, Kobayashi I, Kuroda N. 2013. Artificial neural network modeling for predicting final moisture content of individual Sugi (Cryptomeria japonica) samples during air-drying. J Wood Sci. 59(2):112–118.
  • Witczak M, Korbicz J, Mrugalski M, Patton RJ. 2006. A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem. Control Eng Pract. 14(6):671–683.
  • Wu H, Avramidis S. 2006. Prediction of timber kiln drying rates by neural networks. Dry Technol. 24(12):1541–1545.
  • Yilmaz I, Kaynar O. 2011. Multiple regression, ANN (RBF, MLP), and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl. 38(5):5958–5966.
  • Zhou Z, Rahimi S, Avramidis S, Fang Y. 2020. Species- and moisture-based sorting of green timber mix with near infrared spectroscopy. BioResources. 15(1):317–330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.