706
Views
32
CrossRef citations to date
0
Altmetric
Articles

Browning-related oxygen depletion in an oligotrophic lake

, , , , &
Pages 255-263 | Received 13 Sep 2017, Accepted 09 Mar 2018, Published online: 01 Aug 2018

References

  • Brothers S, Köhler J, Attermeyer K, Grossart HP, Mehner T, Meyer N, Scharnweber K, Hilt S. 2014. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol Oceanogr. 59:1388–1398. doi: 10.4319/lo.2014.59.4.1388
  • Christensen DL, Carpenter SR, Cottingham KL, Knight SE, LeBouton JP, Schindler DE, Voichick N, Cole JJ, Pace ML. 1996. Pelagic responses to changes in dissolved organic carbon following division of a seepage lake. Limnol Oceanogr. 41:553–559. doi: 10.4319/lo.1996.41.3.0553
  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, et al. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 10:172–185. doi: 10.1007/s10021-006-9013-8
  • Couture R-M, de Wit HA, Tominaga K, Kiuru P, Markelov I. 2015. Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs. J Geophys Res-Biogeosci. 120:2015JG003065.
  • Couture S, Houle D, Gagnon C. 2012. Increases of dissolved organic carbon in temperate and boreal lakes in Quebec, Canada. Environ Sci Pollut Res. 19:361–371. doi: 10.1007/s11356-011-0565-6
  • Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science. 321:926–929. doi: 10.1126/science.1156401
  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS. 2006. Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Change Biol. 12:2044–2053. doi: 10.1111/j.1365-2486.2006.01241.x
  • Fang X, Stefan HG. 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous U.S. under past and future climate scenarios. Limnol Oceanogr. 54:2359–2370. doi: 10.4319/lo.2009.54.6_part_2.2359
  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR. 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr. 41:912–920. doi: 10.4319/lo.1996.41.5.0912
  • Finstad AG, Andersen T, Larsen S, Tominaga K, Blumentrath S, de Wit HA, Tømmervik H, Hessen DO. 2016. From greening to browning: catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Sci Rep. 6:31944.
  • Finstad AG, Helland IP, Ugedal O, Hesthagen T, Hessen DO. 2014. Unimodal response of fish yield to dissolved organic carbon. Ecol Lett. 17:36–43. doi: 10.1111/ele.12201
  • Foley B, Jones ID, Maberly SC, Rippey B. 2012. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biol. 57:278–289. doi: 10.1111/j.1365-2427.2011.02662.x
  • Fortino K, Whalen SC, Johnson CR. 2014. Relationships between lake transparency, thermocline depth, and sediment oxygen demand in Arctic lakes. Inland Waters. 4:79–90. doi: 10.5268/IW-4.1.597
  • Hodgkins GA, James IC, Huntington TG. 2002. Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000. Int J Climatol. 22:1819–1827.
  • Horne AJ, Goldman CR. 1994. Limnology. 2nd ed. New York: McGraw-Hill.
  • Houser JN. 2006. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can J Fish Aquat Sci. 63:2447–2455. doi: 10.1139/f06-131
  • Hyndman R. 2016. Package “forecast.” [Accessed 2017 Jan 17]. https://cran.r-project.org/web/packages/forecast/citation.html
  • Idso SB. 1973. On the concept of lake stability1. Limnol Oceanogr. 18:681–683. doi: 10.4319/lo.1973.18.4.0681
  • Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr. 51:815–819. doi: 10.4319/lo.2006.51.2.0815
  • Jenny J-P, Francus P, Normandeau A, Lapointe F, Perga M-E, Ojala A, Schimmelmann A, Zolitschka B. 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Change Biol. 22:1481–1489. doi: 10.1111/gcb.13193
  • Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Soranno PA, Stewart KM. 2007. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol Oceanogr. 52:2013–2026. doi: 10.4319/lo.2007.52.5.2013
  • Keller WB, Heneberry J, Leduc J, Gunn J, Yan N. 2006. Variations in epilimnion thickness in small boreal shield lakes: relationships with transparency, weather and acidification. Environ Monit Assess. 115:419–431. doi: 10.1007/s10661-006-7237-x
  • Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, Cornwell JC, Fisher TR, Glibert PM, Hagy JD, et al. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser. 303:1–29. doi: 10.3354/meps303001
  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, et al. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett. 42:2015GL064097.
  • Kritzberg ES, Ekström SM. 2012. Increasing iron concentrations in surface waters – a factor behind brownification? Biogeosciences. 9:1465–1478. doi: 10.5194/bg-9-1465-2012
  • Larsen S, Andersen T, Hessen DO. 2011. Climate change predicted to cause severe increase of organic carbon in lakes. Glob Change Biol. 17:1186–1192. doi: 10.1111/j.1365-2486.2010.02257.x
  • Livingstone DM. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Change. 57:205–225. doi: 10.1023/A:1022119503144
  • Mazumder A, Taylor WD. 1994. Thermal structure of lakes varying in size and water clarity. Limnol Oceanogr. 39:968–976. doi: 10.4319/lo.1994.39.4.0968
  • Melillo JM, Richmond T, Yohe G. 2014. Climate change impacts in the United States: the third national climate assessment. Washington (DC): US Global Change Research Program. https://doi.org/10.7930/J0Z31WJ2
  • Moeller RE, Williamson CE, Hargreaves BR, Morris DP. 1995. Limnology of Lakes Lacawac, Giles, and Waynewood 1989-1993: an introduction to the core lakes of the Pocono Comparative Lakes Program. Available from Lehigh University Library by Interlibrary Loan System, Bethlehem, PA, USA.
  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 450:537–540. doi: 10.1038/nature06316
  • Montgomery D, Jennings C, Kulahci M. 2008. Introduction to time series analysis and forecasting. Hoboken (NJ): John Wiley and Sons (Wiley Series in Probability and Statistics).
  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr. 40:1381–1391. doi: 10.4319/lo.1995.40.8.1381
  • Mortimer CH. 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30:147–201. doi: 10.2307/2256691
  • North RP, North RL, Livingstone DM, Köster O, Kipfer R. 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob Change Biol. 20:811–823. doi: 10.1111/gcb.12371
  • Nürnberg GK. 1995. Quantifying anoxia in lakes. Limnol Oceanogr. 40:1100–1111. doi: 10.4319/lo.1995.40.6.1100
  • Nürnberg GK, Shaw M. 1998. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia. 382:97–112. doi: 10.1023/A:1003445406964
  • Palmer ME, Yan ND, Somers KM. 2014. Climate change drives coherent trends in physics and oxygen content in North American lakes. Clim Change 124:285–299. doi: 10.1007/s10584-014-1085-4
  • Pilla R. 2015. Lake temperatures as sentinel responses to climate change [master’s thesis]. Oxford (OH): Miami University.
  • R Development Core Team. 2015. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
  • Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E. 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ Model Softw. 26:1325–1336. doi: 10.1016/j.envsoft.2011.05.006
  • Read JS, Rose KC. 2013. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol Oceanogr. 58:921–931. doi: 10.4319/lo.2013.58.3.0921
  • Richardson DC, Melles SJ, Pilla RM, Hetherington AL, Knoll LB, Williamson CE, Kraemer BM, Jackson JR, Long EC, Moore K, et al. 2017. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across northeastern North America (1975–2014). Water. 9:442.
  • Rose KC, Winslow LA, Read JS, Hansen GJA. 2016. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol Oceanogr Lett. 1:44–53. doi: 10.1002/lol2.10027
  • Roulet N, Moore TR. 2006. Environmental chemistry: browning the waters. Nature. 444:283–284. doi: 10.1038/444283a
  • Schindler DW. 2006. Recent advances in the understanding and management of eutrophication. Limnol Oceanogr. 51:356–363. doi: 10.4319/lo.2006.51.1_part_2.0356
  • Schmidtko S, Stramma L, Visbeck M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature. 542:335–339. doi: 10.1038/nature21399
  • Seekell DA, Lapierre J-F, Ask J, Bergström A-K, Deininger A, Rodríguez P, Karlsson J. 2015. The influence of dissolved organic carbon on primary production in northern lakes. Limnol Oceanogr. 60:1276–1285. doi: 10.1002/lno.10096
  • Smith VH. 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res. 10:126–139. doi: 10.1065/espr2002.12.142
  • Snucins E, Gunn J. 2000. Interannual variation in the thermal structure of clear and colored lakes. Limnol Oceanogr. 45:1639–1646. doi: 10.4319/lo.2000.45.7.1639
  • Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr. 54:2243–2254. doi: 10.4319/lo.2009.54.6.2243
  • Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT, Read JS, Sadro S, et al. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems. 18:376–389. doi: 10.1007/s10021-015-9848-y
  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298
  • Vanderploeg HA, Ludsin SA, Ruberg SA, Höök TO, Pothoven SA, Brandt SB, Lang GA, Liebig JR, Cavaletto JF. 2009a. Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. J Exp Mar Biol Ecol. 381 (Suppl.):S92–S107. doi: 10.1016/j.jembe.2009.07.027
  • Vanderploeg HA, Ludsin SA, Cavaletto JF, Höök TO, Pothoven SA, Brandt SB, Liebig JR, Lang GA. 2009b. Hypoxic zones as habitat for zooplankton in Lake Erie: refuges from predation or exclusion zones? J Exp Mar Biol Ecol. 381 (Suppl.):S108–S120. doi: 10.1016/j.jembe.2009.07.015
  • Wetzel R. 2001. Limnology: lake and river ecosystems. San Diego (CA): Academic Press.
  • Weyhenmeyer GA, Meili M, Livingstone DM. 2004. Nonlinear temperature response of lake ice breakup. Geophys Res Lett. 31:L07203.
  • Weyhenmeyer GA, Prairie YT, Tranvik LJ. 2014. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PLOS ONE 9:e88104.
  • Wilhelm S, Adrian R. 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biol. 53:226–237. doi: 10.1111/j.1365-2427.2008.01980.x
  • Wilkinson GM, Cole JJ, Pace ML, Johnson RA, Kleinhans MJ. 2015. Physical and biological contributions to metalimnetic oxygen maxima in lakes. Limnol Oceanogr. 60:242–251. doi: 10.1002/lno.10022
  • Williamson CE, Morris DP, Pace ML, Olson OG. 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr. 44:795–803. doi: 10.4319/lo.1999.44.3_part_2.0795
  • Williamson CE, Overholt EP, Pilla RM, Leach TH, Brentrup JA, Knoll LB, Mette EM, Moeller RE. 2015. Ecological consequences of long-term browning in lakes. Sci Rep. 5:18666.
  • Williamson CE, Stemberger RS, Morris DP, Frost TM, Paulsen SG. 1996. Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol Oceanogr. 41:1024–1034. doi: 10.4319/lo.1996.41.5.1024
  • Winslow LA, Read JS, Woolway R, Brentrup JA, Leach TH, Zwart JA. 2014. rLakeAnalyzer: package for the analysis of lake physics. R package version 1.4. http://cran.r-project.org/package = rLakeAnalyzer
  • Wright D, Shapiro J. 1990. Refuge availability: a key to understanding the summer disappearance of Daphnia. Freshwater Biol. 24:43–62. doi: 10.1111/j.1365-2427.1990.tb00306.x
  • Zhang J, Hudson J, Neal R, Sereda J, Clair T, Turner M, Jeffries D, Dillon P, Molot L, Somers K, et al. 2010. Long-term patterns of dissolved organic carbon in lakes across eastern Canada: evidence of a pronounced climate effect. Limnol Oceanogr. 55:30–42. doi: 10.4319/lo.2010.55.1.0030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.