178
Views
5
CrossRef citations to date
0
Altmetric
Articles

Leaf litter decomposition in Guinean savannah streams

&
Pages 413-421 | Received 13 Feb 2018, Accepted 05 Jun 2018, Published online: 10 Oct 2018

References

  • Abelho M. 2001. From litterfall to breakdown in streams: a review. Sci World J. 1:656–680. doi: 10.1100/tsw.2001.103
  • Abelho M, Cressa C, Graça MAS. 2005. Microbial biomass, respiration, and decomposition of Hura crepitans L. (Euphorbiaceae) leaves in a tropical stream. Biotropica. 37:397–402. doi: 10.1111/j.1744-7429.2005.00052.x
  • Andrade CM, Neres-Lima V, Moulton TP. 2017. Differentiating the roles of shrimp and aquatic insects in leaf processing in a Neotropical stream. Mar Freshw Res. 68:1695–1703. doi: 10.1071/MF16206
  • Bärlocher F, Kendrick B. 1976. Hyphomycetes as intermediaries of energy flow in streams. In: Jones EBJ, editor. Recent advances in aquatic mycology. London (UK): Elek Science; p. 435–446.
  • Benfield EF. 1997. Comparison of litterfall input to streams. J N Am Benthol Soc. 16:104–108. doi: 10.2307/1468242
  • Boulton A, Boon P. 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Aust J Mar Freshw Res. 42:1–43. doi: 10.1071/MF9910001
  • Boyero, L, Graça MAS, Tonin AM, Pérez J, Swafford AJ, Ferreira V, Landeira-Dabarca A, Alexandrou, MA, Gessner MO, McKie BG, et al. 2017. Riparian plant litter quality increases with latitude. Sci Rep. 7:10562.
  • Boyero L, Pearson R, Dudgeon D, Graça MAS, Gessner MO, Albariño RJ, Ferreira V, Yule C, Boulton A, Arunachalam M, et al. 2011a. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology. 92:1839–1848. doi: 10.1890/10-2244.1
  • Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, et al. 2011b. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett. 14:289–294. doi: 10.1111/j.1461-0248.2010.01578.x
  • Boyero L, Pearson RG, Dudgeon D, Ferreira V, Graça MAS, Gessner MO, Boulton AJ, Chauvet E, Yule CM, Albariño RJ, et al. 2012. Global patterns of distribution in stream detritivores: implications for biodiversity loss in changing climates. Glob Ecol Biogeogr. 21:134–141. doi: 10.1111/j.1466-8238.2011.00673.x
  • Boyero L, Pearson RG, Gessner MO, Dudgeon D, Ramírez A, Yule CM, Callisto M, Pringle CM, Encalada AC, Arunachalam M, et al. 2015. Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Sci. 15:759–769. doi: 10.1086/681093
  • Boyero L, Ramírez A, Dudgeon D, Pearson RG. 2009. Are tropical streams really different? J N Am Benthol Soc. 28:397–403. doi: 10.1899/08-146.1
  • Campbell IC, Fuchshuber L. 1995. Polyphenols, condensed tannins, and processing rates of tropical and temperate leaves in an Australian stream. J N Am Benthol Soc. 14:174–182. doi: 10.2307/1467732
  • Chauvet E. 1990. Hyphomycètes aquatiques du sud-ouest de la France [Aquatic hyphomycetes from southwestern France]. Gaussenia. 6:3–31.
  • Datry T, Corti R, Claret C, Philippe M. 2011. Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the “drying memory.” Aquat Sci. 73:471–483. doi: 10.1007/s00027-011-0193-8
  • Enriquez S, Duarte C, Sand-Jensen K. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia. 94:457–471. doi: 10.1007/BF00566960
  • Ferreira V, Encalada AC, Graça MAS. 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Sci. 31:945–962. doi: 10.1899/11-062.1
  • Follstad Shah JJ, Kominoski JS, Ardón M, Dodds WK, Gessner MO, Griffiths NA, Hawkins CP, Johnson SL, Lecerf A, LeRoy CJ, et al. 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Glob Change Biol. 23:3064–3075. doi: 10.1111/gcb.13609
  • García-Palacios P, Mckie BG, Handa IT, Frainer A, Hättenschwiler S. 2016. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct Ecol. 30:819–829. doi: 10.1111/1365-2435.12589
  • Gessner MO. 1997. Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica. 13:33–44.
  • Gessner MO. 2005a. Ergosterol as a measure of fungal biomass. In: Graça MAS, Bärlocher F, Gessner MO, editors. Methods to study litter decomposition. Dordretch (Netherlands): Springer; p. 189–195.
  • Gessner MO. 2005b. Proximate lignin and cellulose. In: Graça MAS, Bärlocher F, Gessner MO, editors. Methods to study litter decomposition. Dordretch (Netherlands): Springer; p. 115–120.
  • Gessner MO, Bärlocher F, Chauvet E. 2003. Qualitative and quantitative analysis of aquatic hyphomycetes in streams. In: Tsui CKM, Hyde KD, editors. Freshwater mycology. Hong Kong: Fungal Diversity Press; p. 127–157.
  • Gessner MO, Chauvet E. 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol. 59:502–7.
  • Gessner MO, Chauvet E. 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology. 75:1807.
  • Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K. 2007. Fungal decomposers of plant litter in aquatic ecosystems. In: Kubikak C, Druzhinina I, editors. The mycota - environmental and microbial relationships (vol. IV), 2nd ed. Berlin (Germany): Springer; p. 301–324.
  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S. 2010. Diversity meets decomposition. Trends Ecol Evol. 25:372–380. doi: 10.1016/j.tree.2010.01.010
  • Gonçalves JF, Graça MA, Callisto M. 2006. Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. J N Am Benthol Soc. 25:344–355. doi: 10.1899/0887-3593(2006)25[344:LBISIT]2.0.CO;2
  • Gonçalves JF, Graça MA, Callisto M. 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biol. 52:1440–1451. doi: 10.1111/j.1365-2427.2007.01769.x
  • Graça MAS. 2001. The role of invertebrates on leaf litter decomposition in streams – a review. Int Rev Hydrobiol. 86:383–393. doi: 10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D
  • Graça MAS, Hyde K, Chauvet E. 2016. Aquatic hyphomycetes and litter decomposition in tropical - subtropical low order streams. Fungal Ecol. 19:182–189. doi: 10.1016/j.funeco.2015.08.001
  • Gulis V, Marvanová L, Descals E. 2005. An illustrated key to the common temperate species of aquatic hyphomycetes. In: Graça MAS, Bärlocher F, Gessner MO, editors. Methods to study litter decomposition. Dordretch (Netherlands): Springer; p. 153–167.
  • [IPCC] Intergovernmental Panel on Climate Change. 2013. Climate change 2013: the physical science basis. Contribution of the Intergovernmental Panel on Climate Change Working Group I to The Fifth Assessment Report.
  • Irons JG, Oswood M, Stout R, Pringle C. 1994. Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biol. 32:401–411. doi: 10.1111/j.1365-2427.1994.tb01135.x
  • Jenkins CC, Suberkropp K. 1995. The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshwater Biol. 33:245–253. doi: 10.1111/j.1365-2427.1995.tb01165.x
  • Lecerf A, Chauvet E. 2008. Diversity and functions of leaf-decaying fungi in human-altered streams. Freshwater Biol. 53:1658–1672. doi: 10.1111/j.1365-2427.2008.01986.x
  • Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R. 2012. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett. 15:1033–1041. doi: 10.1111/j.1461-0248.2012.01826.x
  • Mathuriau C, Chauvet E. 2002. Breakdown of leaf litter in a neotropical stream. J N Am Benthol Soc. 21:384–396. doi: 10.2307/1468477
  • Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology. 63:621–626. doi: 10.2307/1936780
  • Moretti MS, Goncalves JJF, Ligeiro R, Callisto M. 2007. Invertebrates colonization on native tree leaves in a neotropical stream (Brazil). Int Rev Hydrobiol. 92:199–210. doi: 10.1002/iroh.200510957
  • Romaní AM, Chauvet E, Febria C, Mora-Gómez J, Risse-Buhl U, Timoner X, Weitere M, Zeglin L. 2017. The biota of intermittent rivers and ephemeral streams: prokaryotes, fungi and protozoans. In: Datry T, Bonada N, Boulton AJ, editors. intermittent rivers and ephemeral streams: ecology and management. London (UK): Academic Press; p. 161–188.
  • Stout RJ. 1989. Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: a theoretical approach. Can J Fish Aquat Sci. 46:1097–1106. doi: 10.1139/f89-142
  • Tenkiano N, Chauvet E. 2017. tropical shift in decomposers’ relative contribution to leaf litter breakdown in two Guinean streams. Biotropica. 49:439–442. doi: 10.1111/btp.12451
  • Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science. 277:102–104. doi: 10.1126/science.277.5322.102
  • Wantzen KM, Wagner R. 2006. Detritus processing by invertebrate shredders: a neotropical–temperate comparison. J N Am Benthol Soc. 25:216–232. doi: 10.1899/0887-3593(2006)25[216:DPBISA]2.0.CO;2
  • Webster JR, Benfield EF. 1986. Vascular plant breakdown in fresh-water ecosystems. Annu Rev Ecol Syst. 17:567–594. doi: 10.1146/annurev.es.17.110186.003031
  • Yuan ZY, Chen HYH. 2009. Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr. 18:532–542. doi: 10.1111/j.1466-8238.2009.00474.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.