315
Views
10
CrossRef citations to date
0
Altmetric
Articles

Factors related to water quality and thresholds for microcystin concentrations in subtropical Brazilian reservoirs

ORCID Icon, &
Pages 368-380 | Received 18 Jul 2017, Accepted 21 Jun 2018, Published online: 20 Jul 2018

References

  • [APHA] American Public Health Association. 2012. Standard methods for examination of water and wastewater. 22nd ed. Washington (DC): APHA, AWWA, WEF.
  • Beaver JR, Manis EE, Loftin KA, Graham JL, Pollard AI, Mitchell RM. 2014. Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: a preliminary evaluation. Harmful Algae. 36:57–62. doi: 10.1016/j.hal.2014.03.005
  • Bortoli S, Oliveira-Silva D, Krüger T, Dörr FA, Colepicolo P, Volmer DA, Pinto E. 2014. Growth and microcystin production of a Brazilian Microcystis aeruginosa strain (LTPNA 02) under different nutrient conditions. Rev Bras Farmacogn. 24:389–398. doi: 10.1016/j.bjp.2014.07.019
  • Carvalho L, Miller CA, Scott EM, Codd GA, Davies PS, Tyler AN. 2011. Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Sci Total Environ. 409:5353–5358. doi: 10.1016/j.scitotenv.2011.09.030
  • Carvalho LR, Sant’Anna CL, Gemelgo MCP, Azevedo MTP. 2007. Cyanobacterial occurrence and detection of microcystin by planar chromatography in surface water of Billings and Guarapiranga Reservoirs, SP, Brazil. Braz J Bot. 30:141–148. doi: 10.1590/S0100-84042007000100014
  • Castilla EP, Cunha DGF, Lee FWF, Loiselle S, Ho KC, Hall C. 2015. Quantification of phytoplankton bloom dynamics by citizen scientists in urban and peri-urban environments. Environ Monit Assess. 187:690.
  • CETESB. 2011–2015. Relatórios Anuais de Águas Interiores, Companhia Ambiental do Estado de São Paulo [Annual reports on inland waters, São Paulo State Environmental Company] [cited Feb 2018]. http://cetesb.sp.gov.br/aguas-interiores/publicacoes-e-relatorios
  • Chen L, Chen J, Zhang X, Xie P. 2016. A review of reproductive toxicity of microcystins. J Hazard Mater. 301:381–399. doi: 10.1016/j.jhazmat.2015.08.041
  • Conradie KR, Barnard S. 2012. The dynamics of toxic Microcystis strains and microcystin production in two hypertrofic South African reservoirs. Harmful Algae. 20:1–10. doi: 10.1016/j.hal.2012.03.006
  • Cunha DGF, Calijuri MC. 2011. Limiting factors for phytoplankton growth in subtropical reservoirs: the effect of light and nutrient availability in different longitudinal compartments. Lake Reserv Manage. 27:162–172. doi: 10.1080/07438141.2011.574974
  • Cunha DGF, Calijuri MC, Lamparelli MC. 2013. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng. 60:126–134. doi: 10.1016/j.ecoleng.2013.07.058
  • Cunha DGF, Ogura AP, Calijuri MC. 2012. Nutrient reference concentrations and trophic state in subtropical reservoirs. Water Sci Technol. 65:1461–1467. doi: 10.2166/wst.2012.035
  • Dantas EW, Moura AN, Bittencourt-Oliveira MC. 2011. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. An Acad Bras Cienc. 83:1327–1338. doi: 10.1590/S0001-37652011000400019
  • Davis TW, Berry DL, Boyer GL, Gobler CJ. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae. 8:715–725. doi: 10.1016/j.hal.2009.02.004
  • Doan PTK, Némery J, Schmid M, Gratiot N. 2015. Eutrophication of turbid tropical reservoirs: scenarios of evolution of the reservoir of Cointzio, Mexico. Ecol Inform. 29:192–205. doi: 10.1016/j.ecoinf.2015.01.006
  • Dodds WK, Perkin JS, Gerken JE. 2013. Human impact on freshwater ecosystem services: a global perspective. Environ Sci Technol. 47:9061–9068. doi: 10.1021/es4021052
  • Dolman AM, Rücker J, Pick FR, Fastner J, Rohrlack T, Mischke U, Wiedner C. 2012. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE. 7:1–14. doi: 10.1371/journal.pone.0038757
  • El-Shehawy R, Gorokhova E, Fernández-Piñas F, Del Campo FF. 2012. Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water Res. 46:1420–1429. doi: 10.1016/j.watres.2011.11.021
  • Elliot JA. 2012. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res. 46:1364–1371. doi: 10.1016/j.watres.2011.12.018
  • Feir-Walsh BJ, Toothaker LE. 1974. An empirical comparison of the ANOVA F-test, normal scores test and Kruskal-Wallis test under violation of assumptions. Educ Psychol Meas. 34:789–799.
  • Gkelis S, Papadimitriou T, Zaoutsos N, Leonardos I. 2014. Anthropogenic and climate-induced change favors toxic cyanobacteria blooms: evidence from monitoring a highly eutrophic, urban Mediterranean lake. Harmful Algae. 39:322–333. doi: 10.1016/j.hal.2014.09.002
  • Graham JL, Jones JR, Jones SB, Downing JA, Clevenger TE. 2004. Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Res. 38:4395–4404. doi: 10.1016/j.watres.2004.08.004
  • Guildford SJ, Hecky RE. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr. 45:1213–1223. doi: 10.4319/lo.2000.45.6.1213
  • Harris TD, Wilhelm FM, Graham JL, Loftin KA. 2014. Experimental manipulation of TN:TP ratios suppress cyanobacterial biovolume and microcystin concentration in large-scale in situ mesocosms. Lake Reserv Manage. 30:72–83.
  • Hollister JW, Kreakie BJ. 2016. Associations between chlorophyll a and various microcystin-LR health advisory concentrations. F1000Research. 5:151.
  • Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RB, Bressie JD. 2014. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res. 54:188–198. doi: 10.1016/j.watres.2014.01.063
  • Huang WJ, Cheng BL, Cheng YL. 2007. Adsorption of microcystin-LR by three types of activated carbon. J Hazard Mater. 141:115–122. doi: 10.1016/j.jhazmat.2006.06.122
  • Huber V, Wagner C, Gerten D, Adrian R. 2011. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia. 169:245–256. doi: 10.1007/s00442-011-2186-7
  • Hunter PD, Tyler AN, Gilvear DJ, Willby NJ. 2009. Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria. Environ Sci Technol. 43:2627–2633. doi: 10.1021/es802977u
  • Jacoby J, Burghdoff M, Williams G, Read L, Hardy FJ. 2015. Dominant factors associated with microcystins in nine midlatitude, maritime lakes. Inland Waters. 5:187–202. doi: 10.5268/IW-5.2.808
  • Lee J, Walker HW. 2008. Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes. J. Membrane Sci. 320:240–247. doi: 10.1016/j.memsci.2008.04.007
  • Lee J, Walker HW. 2011. Adsorption of microcystin-Lr onto iron oxide nanoparticles. Colloid Surface. A373:94–100. doi: 10.1016/j.colsurfa.2010.10.032
  • Lee T, Rollwagen-Bollens G, Bollens SM, Faber-Hammond JJ. 2015. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotox Environ Safe. 114:318–325. doi: 10.1016/j.ecoenv.2014.05.004
  • Leigh C, Burford MA, Roberts DT, Udy JW. 2010. Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water Res. 44:4487–4496. doi: 10.1016/j.watres.2010.06.016
  • Li J, Shimizu K, Akasako H, Lu Z, Akiyama S, Goto M, Utsumi M, Sugiura N. 2015. Assessment of the factors contributing to the variations in microcystins biodegradability of the biofilms on a practical biological treatment facility. Bioresour Technol. 175:463–472. doi: 10.1016/j.biortech.2014.10.047
  • Li J, Zhang Y, Ma R, Duan H, Loiselle S, Xue K, Liang Q. 2017. Satellite-based estimation of column-integrated algal biomass in nonalgae bloom conditions: a case study of Lake Chaohu, China. IEEE J-STARS. 2:450–462.
  • Loftin KA, Graham JL, Hilborn ED, Lehmann SC, Meyer MT, Dietze JE, Griffith CB. 2016. Cyanotoxins in inland lakes of the United States: occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae. 56:77–90. doi: 10.1016/j.hal.2016.04.001
  • Marmen S, Aharonovich D, Grossowicz M, Blank L, Yacobi YZ, Sher DJ. 2016. Distribution and habitat specificity of potentially-toxic Microcystis across climate, land, and water use gradients. Front Microbiol. 7:1–14. doi: 10.3389/fmicb.2016.00271
  • Merel S, Villarín MC, Chung K, Snyder S. 2013a. Spatial and thematic distribution of research on cyanotoxins. Toxicon. 76:118–131. doi: 10.1016/j.toxicon.2013.09.008
  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O. 2013b. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int. 59:303–327. doi: 10.1016/j.envint.2013.06.013
  • Moisander PH, Ochiai M, Lincoff A. 2009. Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs. Harmful Algae. 8:889–897. doi: 10.1016/j.hal.2009.04.005
  • Monchamp ME, Pick FR, Beisner BE, Maranger R. 2014. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLOS ONE. 9:1–10. doi: 10.1371/journal.pone.0085573
  • Morrison AM, Coughlin K, Shine JP, Coull BA, Rex AC. 2003. Receiver operating characteristic curve analysis of beach water quality indicator variables. Appl Environ Microbiol. 69:6405–6411. doi: 10.1128/AEM.69.11.6405-6411.2003
  • Moschini-Carlos V, Bortoli S, Pinto E, Nishimura PY, Freitas LG, Pompêo MLM, Dörr F. 2009. Cyanobacteria and cyanotoxin in the Billings Reservoir (Sao Paulo, SP, Brazil). Limnetica. 28:273–282.
  • Okumura DT, Sotero-Santos RB, Takenaka RA, Rocha O. 2007. Evaluation of cyanobacteria toxicity in tropical reservoirs using crude extracts bioassay with cladocerans. Ecotoxicology. 16:263–270. doi: 10.1007/s10646-006-0126-9
  • O’Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae. 14:313–334. doi: 10.1016/j.hal.2011.10.027
  • Orihel DM, Bird DF, Brylinsky M, Chen H, Donald DB, Huang DY, Giani A, Kinniburgh D, Kling H, Kotak BG, et al. 2012. High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Can J Fish Aquat Sci. 69:1457–1462. doi: 10.1139/f2012-088
  • Padisák J, Barbosa FAR, Borbély G, Borics G, Chorus I, Espíndola ELG, Heinze R, Rocha O, Törökné AK, Vasas G. 2000. Phytoplankton composition, biodiversity and a pilot survey of toxic cyanoprokaryotes in a large cascading reservoir system (Tietê basin, Brazil). Verh Internat Verein Limnol. 27:2734–2742.
  • Paerl HW, Hall NS, Peierls BL, Rossignol KL. 2014. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuar Coast. 37:243–258. doi: 10.1007/s12237-014-9773-x
  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science. 320:57–58. doi: 10.1126/science.1155398
  • Paerl HW, Otten TG. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol. 65:995–1010. doi: 10.1007/s00248-012-0159-y
  • Persaud AD, Paterson AM, Dillon PJ, Winter JG, Palmer M, Somers KM. 2015. Forecasting cyanobacteria dominance in Canadian temperate lakes. J Environ Manage. 151:343–352. doi: 10.1016/j.jenvman.2015.01.009
  • Pineda-Mendoza RM, Zúñiga G, Martínez-Jerónimo F. 2016. Microcystin production in Microcystis aeruginosa: effect of type of strain, environmental factors, nutrient concentrations, and N:P ratio on mcyA gene expression. Aquat Ecol. 50:103–119. doi: 10.1007/s10452-015-9559-7
  • Pitois FP, Vezie C, Thoraval I, Baurès E. 2016. Improving microcystin monitoring relevance in recreative waters: a regional case-study (Brittany, Western France, Europe). Int J Hyg Envir Heal. 219:288–293. doi: 10.1016/j.ijheh.2015.12.004
  • Potes M, Costa MJ, Salgado R. 2012. Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling. Hydrol Earth Syst Sc. 16:1623–1633. doi: 10.5194/hess-16-1623-2012
  • Rigosi A, Carey CC, Ibelings BW, Brookes JD. 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr. 59:99–114. doi: 10.4319/lo.2014.59.1.0099
  • Rinta-Kanto JM, Konopko EA, DeBruyn JM, Bourbonniere RA, Boyer GJ, Wilhelm SW. 2009. Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae. 8:665–673. doi: 10.1016/j.hal.2008.12.004
  • Rossel V, De La Fuente A. 2015. Assessing the link between environmental flow, hydropeaking operation and water quality of reservoirs. Ecol Eng. 85:26–38. doi: 10.1016/j.ecoleng.2015.09.074
  • Schindler DW. 1998. Replication versus realism: the need for ecosystem-scale experiments. Ecosystems. 1:323–334. doi: 10.1007/s100219900026
  • Shang L, Feng M, Liu F, Xu X, Ke F, Chen X, Li W. 2015. The establishment of preliminary safety threshold values for cyanobacteria based on periodic variations in different microcystin congeners in Lake Chaohu, China. Environ Sci-Proc Imp. 17:728–739.
  • Shi K, Zhang Y, Xu H, Zhu G, Qin B, Huang C, Liu X, Zhou Y, Lv H. 2015. Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environ. Sci Technol. 49:6448–6456. doi: 10.1021/es505901a
  • Simis SGH, Peters SWM, Gons HJ. 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr. 50:237–245. doi: 10.4319/lo.2005.50.1.0237
  • Sinang SC, Reichwaldt ES, Ghadouani A. 2013. Spatial and temporal variability in the relationship between cyanobacterial biomass and microcystins. Environ Monit Assess. 185:6379–6395. doi: 10.1007/s10661-012-3031-0
  • Singh S, Rai PK, Chau R, Ravi AK, Neilan BA, Asthana RK. 2015. Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds. Water Res. 69:131–142. doi: 10.1016/j.watres.2014.11.015
  • Sotero-Santos RB, Silva CRSE, Verani NF, Nonaka KO, Rocha O. 2006. Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tietê River, São Paulo, Brazil). Ecotox Environ Safe. 64:163–170. doi: 10.1016/j.ecoenv.2005.03.011
  • Taylor WD, Losee RF, Torobin M, Izaguirre G, Sass D, Khiari D, Atasi K. 2006. Early warning and management of surface water taste-and-odor events. American Water Works Association Research Foundation.
  • Te SH, Gin KYH. 2011. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 10:319–329. doi: 10.1016/j.hal.2010.11.006
  • Teles LO, Vasconcelos V, Pereira E, Saker M. 2006. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environ Manage. 38:227–237. doi: 10.1007/s00267-005-0074-9
  • Tyler AN, Hunter PD, Carvalho L, Codd GA, Elliot JA, Ferguson CA, Hanley ND, Hopkins DW, Maberly SC, Mearns KJ, Scott EM. 2009. Strategies for monitoring and managing mass populations of toxic cyanobacteria in recreational waters: a multi-interdisciplinary approach. Environ Health. 8:S11. doi: 10.1186/1476-069X-8-S1-S11
  • Vašeka M, Prchalováa M, Říhaa M, Blabolila P, Čecha M, Draštíka V, Frouzováa J, Jůzaa T, Kratochvíla M, Muškaa M, et al. 2016. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: implications for ecological monitoring and management. Ecol Indic. 63:219–230. doi: 10.1016/j.ecolind.2015.11.061
  • Vieira JMS, Azevedo MTP, Azevedo SMFO, Honda RY, Corrêa B. 2003. Microcystin production by Radiocystis fernandoi (Chroococcales, Cyanobacteria) isolated from a drinking water reservoir in the city of Belém, PA, Brazilian Amazonia region. Toxicon. 42:709–713. doi: 10.1016/j.toxicon.2003.08.004
  • Visser PM, Verspagen JMH G, Sandrini G, Stal LJ, Matthijs HCP, Davis TW, Paerl HW, Huisman J. 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae. 54:145–159. doi: 10.1016/j.hal.2015.12.006
  • Wang L, Liu L, Zheng B. 2013. Eutrophication development and its key regulating factors in a water-supply reservoir in North China. J Environ Sci. 25:962–970. doi: 10.1016/S1001-0742(12)60120-X
  • Wang Q, Niu Y, Xie P, Chen J, Ma Z, Tao M, Qi M, Wu L, Guo L. 2010. Factors affecting temporal and spatial variations of microcystins in Gonghu Bay of Lake Taihu, with potential risk of microcystin contamination to human health. Sci World J. 10:1795–1809. doi: 10.1100/tsw.2010.172
  • Wei DC, Su J, Ji DF, Fu XY, Wang J, Huo SL, Cui CF, Tang J, Xi BD. 2014. Research on the threshold of Chl-a in Lake Taihu based on microcystins. Huan Jing Ke Xue. 35:4530–4536.
  • Wilhelm SW, Farnsley SE, LeCleir GR, Layton AC, Satchwell MF, DeBruyn JM, Boyer GL, Zhu G, Paerl HW. 2011. The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae. 10:207–215. doi: 10.1016/j.hal.2010.10.001
  • Wood R. 2016. Acute animal and human poisonings from cyanotoxin exposure — A review of the literature. Environ Int. 91:276–282. doi: 10.1016/j.envint.2016.02.026
  • [WHO] World Health Organization. 1998. Guidelines for drinking-water quality, 2nd ed. Addendum to Vol. 2. Health criteria and other supporting information. Geneva (Switzerland): WHO.
  • Ye W, Liu X, Tan J, Li D, Yang H. 2009. Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae. 8:637–644. doi: 10.1016/j.hal.2008.10.010
  • Yuan LL, Pollard AI, Pather S, Oliver JL, D’Anglada L. 2014. Managing microcystin: identifying national-scale thresholds for total nitrogen and chlorophyll a. Freshwater Biol. 59:1970–1981.
  • Zhang Y, Ma R, Duan H, Loiselle S, Xu J. 2014. A spectral decomposition algorithm for estimating chlorophyll-a concentrations in Lake Taihu, China. Remote Sensing. 6:5090–5106.
  • Zhang M, Zhang Y, Yang Z, Wei L, Yang W, Chen C, Kong F. 2016a. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: patterns and driving factors. Phycol Res. 64:44–55. doi: 10.1111/pre.12112
  • Zhang Y, Shao Y, Gao N, Chu W, Sun Z. 2016b. Removal of microcystin-LR by free chlorine: identify of transformation products and disinfection by-products formation. Chem Eng J. 287:189–195. doi: 10.1016/j.cej.2015.10.111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.