127
Views
4
CrossRef citations to date
0
Altmetric
Research Brief

Characterizing the transformation of aquatic humic substances exposed to ultraviolet radiation using excitation–emission matrix fluorescence spectroscopy and PARAFAC

, , &
Pages 505-511 | Received 01 Nov 2017, Accepted 27 Jul 2018, Published online: 01 Nov 2018

References

  • Aiken GR, McKnight DM, Thorn KA, Thurman EM. 1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Org Geochem. 18:567–573. doi: 10.1016/0146-6380(92)90119-I
  • Benner R, Kaiser K. 2011. Biological and photochemical transformations of amino acids and lignin phenols in riverine dissolved organic matter. Biogeochemistry. 102:109–122. doi: 10.1007/s10533-010-9435-4
  • Bertilsson S, Stepanauskas R, Cuadros-Hansson R, Granéli W, Wikner J, Tranvik L. 1999. Photochemically induced changes in bioavailable carbon and nitrogen pools in a boreal watershed. Aquat Microb Ecol. 19:47–56. doi: 10.3354/ame019047
  • Bro R, Kiers HA. 2003. A new efficient method for determining the number of components in PARAFAC models. J Chemometr. 17:274–286. doi: 10.1002/cem.801
  • Chen M, Jaffé R. 2014. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Res. 61:181–190. doi: 10.1016/j.watres.2014.03.075
  • Chen M, Jaffè R. 2016. Quantitative assessment of photo- and bio-reactivity of chromophoric and fluorescent dissolved organic matter from biomass and soil leachates and from surface waters in a subtropical wetland. Biogeochemistry. 129:273–289. doi: 10.1007/s10533-016-0231-7
  • Chen M, Rene MP, Yamashita Y, Jaffè R. 2010. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Appl Geochem. 25:872–880. doi: 10.1016/j.apgeochem.2010.03.005
  • Coble PG. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem. 51:325–346. doi: 10.1016/0304-4203(95)00062-3
  • Coble PG, Schultz CA, Mopper K. 1993. Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques. Mar Chem. 41:173–178. doi: 10.1016/0304-4203(93)90116-6
  • Cory RM, Crump BC, Dobkowski JA, Kling GW. 2013. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. PNAS. 110:3429–3434. doi: 10.1073/pnas.1214104110
  • Cory RM, Ward CP, Crump BC, Kling GW. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science. 345:925.
  • De Haan H. 1993. Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnol Oceanogr. 38:1072–1076. doi: 10.4319/lo.1993.38.5.1072
  • Del Vecchio R, Blough NV. 2004. On the origin of the optical properties of humic substances. Environ Sci Technol. 38:3885–3891. doi: 10.1021/es049912h
  • Green SA, Blough NV. 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr. 39:1903–1916. doi: 10.4319/lo.1994.39.8.1903
  • He W, Hur J. 2015. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter. Water Res. 83:217–226. doi: 10.1016/j.watres.2015.06.044
  • Helms JR, Mao J, Stubbins A, Schmidt-Rohr K, Spencer RGM, Hernes PJ, Spencer K. 2014. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching. Aqua Sci. 76: 353–373. doi: 10.1007/s00027-014-0340-0
  • Herndl GJ, Brugger A, Hager S, Kaiser E, Obernosterer I, Reitner B, Slezak D. 1997. Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter. Plant Ecology. 128:42–51. doi: 10.1023/A:1009742508284
  • Fellman JB, Hood E, Spencer RGM. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr. 55:2452–2462. doi: 10.4319/lo.2010.55.6.2452
  • Kalbitz K, Geyer W, Geyer S. 1999. Spectroscopic properties of dissolved humic substances – a reflection of land use history in a fen area. Biogeochemistry. 47:219–238.
  • Kieber RJ, Zhou X, Mopper K. 1990. Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: Fate of riverine carbon in the sea. Limnol Oceanogr. 35:1503–1515. doi: 10.4319/lo.1990.35.7.1503
  • Lean D. 1998. Aquatic humic substances: ecology and biogeochemistry. Berlin (Germany): Springer-Verlag.
  • Malcolm RL, MacCarthy P. 1992. Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water. Environ Int. 18:597–607. doi: 10.1016/0160-4120(92)90027-2
  • McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M. 2007. Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci. 6:218–231.
  • Miller MP, McKnight DM, Chapra SC. 2009. Production of microbially-derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton. Aqua Sci. 71:170–178. doi: 10.1007/s00027-009-9194-2
  • Mopper K, Ziiou X, Kihber RJ, Kieber DJ, Sikorski RJ, Jones RD. 1991. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature. 353:60–62. doi: 10.1038/353060a0
  • Obernosterer I, Benner R. 2004. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol Oceanogr. 49:117–124. doi: 10.4319/lo.2004.49.1.0117
  • Ohno T. 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol. 36:742–746. doi: 10.1021/es0155276
  • Pernet-coudrier B, Clouzot L, Varrault G, Tusseau-vuillemin M, Verger A, Mouchel J. 2008. Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity. Chemosphere. 73:593–599. doi: 10.1016/j.chemosphere.2008.05.064
  • Peuravuori J, Ingman P, Pihlaja K, Koivikko R. 2001. Comparisons of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state 13C NMR spectroscopy’s point of view. Talanta. 55:733–742. doi: 10.1016/S0039-9140(01)00478-7
  • R Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  • Rossel PE, Vähätalo AV, Witt M, Dittmar T. 2013. Molecular composition of dissolved organic matter from a wetland plant (Juncus effusus) after photochemical and microbial decomposition (1.25 yr): common features with deep sea dissolved organic matter. Org Geochem. 60:62–71. doi: 10.1016/j.orggeochem.2013.04.013
  • Santos PSM, Otero M, Filipe OMS, Santos EBH, Duarte AC. 2010. Comparison between DAX-8 and C-18 solid phase extraction of rainwater dissolved organic matter. Talanta. 83:505–512. doi: 10.1016/j.talanta.2010.09.050
  • Senga Y, Moriai S, Naruoka C, Nedachi R, Terui S. 2017. Characterizing the photochemical degradation of aquatic humic substances from a dystrophic lake using excitation-emission matrix fluorescence spectroscopy and parallel factor analysis. Limnology. 18:97–110. doi: 10.1007/s10201-016-0493-8
  • Shammi M, Pan X, Mostofa KMG, Zhang D, Liu C. 2017. Photo-flocculation of microbial mat extracellular polymeric substances and their transformation into transparent exopolymer particles: chemical and spectroscopic evidences. Sci Rep. 7:9074.
  • Stedmon CA, Markager S, Tranvik L, Kronberg L, Slätis T, Martinsen W. 2007. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar Chem. 104:227–240. doi: 10.1016/j.marchem.2006.11.005
  • Thurman EM, Malcolm RL. 1981. Preparative isolation of aquatic humic substances. Environ Sci Technol. 15:463–466. doi: 10.1021/es00086a012
  • Tsuda K, Kida M, Aso S, Kato T, Fujitake N, Maruo M, Hayakawa K, Hirota M. 2016. Determination of aquatic humic substances in Japanese lakes and wetlands by the carbon concentration-based resin isolation technique. Limnology. 17:1–6. doi: 10.1007/s10201-015-0455-6
  • Tsuda K, Takata A, Shirai H, Kozaki K, Fujitake N. 2012. A method for quantitative analysis of aquatic humic substances in clear water based on carbon concentration. Anal Sci. 28:1017–1020. doi: 10.2116/analsci.28.1017
  • Wetzel RG. 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull Mar Sci. 35:503–509.
  • Wetzel PG. 2001. Limnology: lake and river ecosystems. New York (NY): Elsevier.
  • Williams CY, Yamashita Y, Wilson HF, Jaffé R, Xenopoulos A. 2010. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr. 55:1159–1171. doi: 10.4319/lo.2010.55.3.1159
  • Zsolnay Á. 2003. Dissolved organic matter: artefacts, definitions, and functions. Geoderma. 113:187–209. doi: 10.1016/S0016-7061(02)00361-0
  • Zsolnay Á, Baigar E, Jimenez M, Steinweg B, Saccomandi F. 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere. 38:45–50. doi: 10.1016/S0045-6535(98)00166-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.