489
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simple model for predicting oxygen depletion in lakes under climate change

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 04 Jul 2023, Accepted 04 Jan 2024, Published online: 03 May 2024

References

  • Adrian R, Mischke U, Stellmacher R, Lederer P. 1995. A long-term study of the heiligensee (1975–1992). Evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems. Arch Hydrobiol. 133:315–337.
  • Anderson EJ, Stow CA, Gronewold AD, Mason LA, McCormick MJ, Qian SS, Ruberg SA, Beadle K, Constant SA, Hawley N. 2021. Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes. Nat Commun. 12(1):1688.
  • Arvola L, George G, Livingstone DM, Järvinen M, Blenckner T, Dokulil MT, Jennings E, Aonghusa CN, Nõges P, Nõges T. 2010. The impact of the changing climate on the thermal characteristics of lakes. In: George G, editor. The impact of climate change on European lakes. Berlin: Springer; p. 85–101.
  • Axler RP, Larsen C, Tikkanen CA, McDonald ME, Host GE. 1992. Limnological assessment of mine pit lakes for aquaculture use. NRRI Technical Report, NRRI/TR-92-03. Duluth (MN): University of Minnesota, Natural Resources Research Institute.
  • Beaulieu JJ, DelSontro T, Downing JA. 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat Commun. 10(1):1375.
  • Bella DA. 1970. Dissolved oxygen variations in stratified lakes. J Sanit Eng Div. 96(5):1129–1146.
  • Beutel MW. 2003. Hypolimnetic anoxia and sediment oxygen demand in California drinking water reservoirs. Lake Reservoir Manag. 19(3):208–221.
  • Biddanda BA, Weinke AD, Kendall ST, Gereaux LC, Holcomb TM, Snider MJ, Dila DK, Long SA, VandenBerg C, Knapp K. 2018. Chronicles of hypoxia: time-series buoy observations reveal annually recurring seasonal basin-wide hypoxia in Muskegon Lake—a Great Lakes estuary. J Gt Lakes Res. 44(2):219–229.
  • Blumberg AF, Di Toro DM. 1990. Effects of climate warming on dissolved oxygen concentrations in Lake Erie. Trans Am Fish Soc. 119(2):210–223.
  • Bocaniov SA, Ullmann C, Rinke K, Lamb KG, Boehrer B. 2014. Internal waves and mixing in a stratified reservoir: insights from three-dimensional modeling. Limnologica. 49:52–67.
  • Boehrer B, Jordan S, Leng P, Waldemer C, Schwenk C, Hupfer M, Schultze M. 2021. Gas pressure dynamics in small and mid-size lakes. Water. 13(13):1824.
  • Boehrer B, Schultze M. 2008. Stratification of lakes. Rev Geophys. 46(2):RG2005.
  • Borowiak D, Nowiński K, Barańczuk J, Marszelewski W, Skowron R, Solarczyk A. 2011. Relationship between areal hypolimnetic oxygen depletion rate and the trophic state of five lakes in northern Poland. Limnol Rev. 11(4):135–142.
  • Bouffard D, Ackerman JD, Boegman L. 2013. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: hourly to seasonal patterns. Water Resour Res. 49(5):2380–2394.
  • Brothers S, Köhler J, Attermeyer K, Grossart H-P, Mehner T, Meyer N, Scharnweber K, Hilt S. 2014. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol Oceanogr. 59(4):1388–1398.
  • Burns N, Ross C. 1972. Oxygen-nutrient relationships within the central basin of Lake Erie. In: Burns NM, Ross C, editors. Project Hypo—an intensive study of the Lake Erie central basin hypolimnion and related surface water phenomena. Canadian Center for Inland Waters Paper 6, and US Environmental Protection Agency, Tech. Rep. TS-05 1-71-208-24; p 85–119.
  • Burns NM. 1995. Using hypolimnetic dissolved oxygen depletion rates for monitoring lakes. N Z J Mar Freshw Res. 29(1):1–11.
  • Burns NM, Rockwell DC, Bertram PE, Dolan DM, Ciborowski JJ. 2005. Trends in temperature, Secchi depth, and dissolved oxygen depletion rates in the central basin of Lake Erie, 1983–2002. J Great Lakes Res. 31:35–49.
  • Butts T, Evans R. 1977. The art and science of measuring sediment oxygen demand in the field. Unpublished mimeo presented at AMSA-MSD Water Quality Conference, Chicago (IL), 20–22 Apr 1977.
  • Butts TA. 1978. Sediment oxygen demand studies of selected northeastern Illinois streams. Chicago (IL): Illinois State Water Survey. Circular no 129.
  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46(5):1394–1407.
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr. 22(2):361–369.
  • Coats R, Perez-Losada J, Schladow G, Richards R, Goldman C. 2006. The warming of Lake Tahoe. Clim Change. 76(1–2):121–148.
  • Conroy JD, Boegman L, Zhang H, Edwards WJ, Culver DA. 2011. “Dead zone” dynamics in Lake trie: the importance of weather and sampling intensity for calculated hypolimnetic oxygen depletion rates. Aquat Sci. 73(2):289–304.
  • Cooke GD, Welch EB, Peterson S, Nichols SA, editors. 2005. Restoration and management of lakes and reservoirs. 3rd ed. Boca Raton (FL): CRC press.
  • Cornett JL. 1982. Prediction and interpretation of rates of hypolimnetic oxygen depletion [dissertation]. Montreal (QC): McGill University.
  • Couture RM, de Wit HA, Tominaga K, Kiuru P, Markelov I. 2015. Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and doc inputs. J Geophys Res Biogeosci. 120(11):2441–2456.
  • Denkenberger JS, Driscoll CT, Effler SW, O’Donnell DM, Matthews DA. 2007. Comparison of an urban lake targeted for rehabilitation and a reference lake based on robotic monitoring. Lake Reservoir Manag. 23(1):11–26.
  • Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science. 321(5891):926–929.
  • Dokulil MT, Jagsch A, George GD, Anneville O, Jankowski T, Wahl B, Lenhart B, Blenckner T, Teubner K. 2006. Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol Oceanogr. 51(6):2787–2793.
  • Dong F, Mi C, Hupfer M, Lindenschmidt KE, Peng W, Liu X, Rinke K. 2020. Assessing vertical diffusion in a stratified lake using a three-dimensional hydrodynamic model. Hydrol Processes. 34(5):1131–1143.
  • Dubois N, Saulnier-Talbot É, Mills K, Gell P, Battarbee R, Bennion H, Chawchai S, Dong X, Francus P, Flower R. 2018. First human impacts and responses of aquatic systems: a review of paleolimnological records from around the world. Anth Rev. 5(1):28–68.
  • Edmondson W. 1961. Changes in Lake Washington following an increase in the nutrient income: with 5 figures and 2 tables in the text. SIL Proc 1922–2010. 14(1):167–175.
  • Encinas Fernández J, Peeters F, Hofmann H. 2014. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ Sci Technol. 48(13):7297–7304.
  • European Commission. 2000. Directive 2000/60/EC of the European parliament and of the council establishing a framework for the community action in the field of water policy. OJ L327, 22.12.2000.
  • Evans DO, Nicholls KH, Allen YC, McMurtry MJ. 1996. Historical land use, phosphorus loading, and loss of fish habitat in Lake Simcoe, Canada. Can J Fish Aquat Sci. 53(S1):194–218.
  • Fang X, Stefan HG. 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous U.S. under past and future climate scenarios. Limnol Oceanogr. 54(6 part 2):2359–2370.
  • Ficker H, Luger M, Gassner H. 2017. From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw Biol. 62(8):1335–1345.
  • Foley B, Jones ID, Maberly SC, Rippey B. 2012. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw Biol. 57(2):278–289.
  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK. 2005. Global consequences of land use. Science. 309(5734):570–574.
  • Gibbs M. 1992. Influence of hypolimnetic stirring and underflow on the limnology of Lake Rotoiti, New Zealand. N Z J Mar Freshw Res. 26(3–4):453–463.
  • Göncü S, Albek E. 2019. An integrated approach to assess the ecological and chemical status of lakes with HOD/AHOD: a case study of two lakes. J Oceanol Limnol. 37(1):146–159.
  • Gregersen R, Howarth JD, Wood SA, Vandergoes MJ, Puddick J, Moy C, Li X, Pearman JK, Moody A, Simon KS. 2022. Resolving 500 years of anthropogenic impacts in a mesotrophic lake: nutrients outweigh other drivers of lake change. Environ Sci Technol. 56(23):16940–16951.
  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature. 466(7305):478–481.
  • Hanson PC, Carpenter SR, Armstrong DE, Stanley EH, Kratz TK. 2006. Lake dissolved inorganic carbon and dissolved oxygen: changing drivers from days to decades. Ecol Monogr. 76(3):343–363.
  • Ho JC, Michalak AM, Pahlevan N. 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature. 574(7780):667–670.
  • Huntington TG. 2006. Evidence for intensification of the global water cycle: review and synthesis. J Hydrol. 319(1–4):83–95.
  • Hutchinson GE. 1957. A treatise on limnology. Vol 1: Geography, physics and chemistry. Hoboken (NJ): John Wiley & Sons.
  • Imboden D, Joller T. 1984. Turbulent mixing in the hypolimnion of Baldeggersee (Switzerland) traced by natural radon-2221. Limnol Oceanogr. 29(4):831–844.
  • Imboden DM. 1973. Limnologische transport-und nährstoffmodelle [Limnological transport and nutrient models]. Schweiz Z Hydrol. 35(1):29–68.
  • Jane SF, Hansen GJ, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RI. 2021. Widespread deoxygenation of temperate lakes. Nature. 594(7861):66–70.
  • Jane SF, Mincer JL, Lau MP, Lewis AS, Stetler JT, Rose KC. 2022. Longer duration of seasonal stratification contributes to widespread increases in lake hypoxia and anoxia. Global Change Biol. 29(10):1009–1023.
  • Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr. 51(2):815–819.
  • Jenny JP, Francus P, Normandeau A, Lapointe F, Perga ME, Ojala A, Schimmelmann A, Zolitschka B. 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biol. 22(4):1481–1489.
  • Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Özen A. 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual. 38(5):1930–1941.
  • Jónasson P, Lastein E, Rebsdorf A. 1974. Production, insolation, and nutrient budget of eutrophic Lake Esrom. Oikos. 25(3):255–277.
  • Jones ID, Winfield IJ, Carse F. 2008. Assessment of long-term changes in habitat availability for Arctic charr (Salvelinus alpinus) in a temperate lake using oxygen profiles and hydroacoustic surveys. Freshw Biol. 53(2):393–402.
  • Kerekes JJ. 1974. Limnological conditions in five small oligotrophic lakes in Terra Nova National Park, Newfoundland. J Fish Res Board Can. 31(5):555–583.
  • Knutti R, Sedláček J. 2013. Robustness and uncertainties in the new cmip5 climate model projections. Nat Clim Change. 3(4):369–373.
  • Kong X, Ghaffar S, Determann M, Friese K, Jomaa S, Mi C, Shatwell T, Rinke K, Rode M. 2022. Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change. Water Res. 221:118721.
  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett. 42(12):4981–4988.
  • Kreling J, Bravidor J, Engelhardt C, Hupfer M, Koschorreck M, Lorke A. 2017. The importance of physical transport and oxygen consumption for the development of a metalimnetic oxygen minimum in a lake. Limnol Oceanogr. 62(1):348–363.
  • LaBounty JF, Burns NM. 2007. Long-term increases in oxygen depletion in the bottom waters of boulder basin, Lake Mead, Nevada-Arizona, USA. Lake Reserv Manag. 23(1):69–82.
  • LaBrie R, Hupfer M, Lau MP. 2023. Anaerobic duration predicts biogeochemical consequences of oxygen depletion in lakes. Limnol Ocean Lett. 8(4):666–674.
  • Lasenby DC. 1975. Development of oxygen deficits in 14 southern Ontario lakes. Limnol Oceanogr. 20(6):993–999.
  • Lee RM, Biggs TW. 2015. Impacts of land use, climate variability, and management on thermal structure, anoxia, and transparency in hypereutrophic urban water supply reservoirs. Hydrobiologia. 745:263–284.
  • Livingstone DM. 1997. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. Int Verein Theor Angew Limnol Ver. 26(2):822–828.
  • Livingstone DM. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Change. 57(1–2):205–225.
  • Livingstone DM, Imboden DM. 1996. The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Can J Fish Aquat Sci. 53(4):924–932.
  • Lucas A, Thomas N. 1972. Sediment oxygen demand in Lake Erie’s central basin, 1970. In: Burns NM, Ross M, editors. Project Hypo—an intensive study of the Lake Erie central basin hypolimnion and related surface water phenomena. USEPA Tech Report TS-05-71208-24.
  • Maheaux H, Leavitt PR, Jackson LJ. 2016. Asynchronous onset of eutrophication among shallow prairie lakes of the northern Great Plains, Alberta, Canada. Global Change Biol. 22(1):271–283.
  • Marcus NH. 2001. Zooplankton: responses to and consequences of hypoxia. In: Rabalais NN, Turner RE, editors. Coastal hypoxia: consequences for living resources and ecosystems. Washington (DC): American Geophysical Union; p. 49–60.
  • Marotta H, Pinho L, Gudasz C, Bastviken D, Tranvik LJ, Enrich-Prast A. 2014. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat Clim Change. 4(6):467–470.
  • Matthews DA, Effler SW. 2006. Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga Lake: evidence of sediment feedback. Limnol Oceanogr. 51(1 part 2):702–714.
  • Mi C, Shatwell T, Ma J, Xu Y, Su F, Rinke K. 2020. Ensemble warming projections in Germany’s largest drinking water reservoir and potential adaptation strategies. Sci Total Environ. 748:141366.
  • Michalski M, Johnson M, Veal D, Brydges T. 1973. Muskoka lakes water quality evaluation. Rpt. No. 3, Eutrophication of the Muskoka Lakes. Toronto (ON): Ontario Ministry of the Environment, Water Resources Branch.
  • Mitchell S, Burns CW. 1979. Oxygen consumption in the epilimnia and hypolimnia of two eutrophic, warm-monomictic lakes. N Z J Mar Freshw Res. 13(3):427–441.
  • Molot L, Dillon P, Clark B, Neary B. 1992. Predicting end-of-summer oxygen profiles in stratified lakes. Can J Fish Aquat Sci. 49(11):2363–2372.
  • Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu Z, De Meester L. 2011. Allied attack: climate change and eutrophication. Inland Waters. 1(2):101–105.
  • Müller B, Bryant LD, Matzinger A, Wüest A. 2012. Hypolimnetic oxygen depletion in eutrophic lakes. Environ Sci Technol. 46(18):9964–9971.
  • Nicholls KH. 1976. Comparative limnology of Harp and Jerry Lakes, adjacent cottaged and uncottaged lakes on southern Ontario's Precambrian Shield. Toronto (ON): Ontario Ministry of the Environment, Water Resources Branch.
  • North RP, Livingstone DM, Hari RE, Köster O, Niederhauser P, Kipfer R. 2013. The physical impact of the late 1980s climate regime shift on Swiss Rivers and lakes. Inland Waters. 3(3):341–350.
  • North RP, North RL, Livingstone DM, Köster O, Kipfer R. 2014. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Global Change Biol. 20(3):811–823.
  • Nürnberg GK. 2002. Quantification of oxygen depletion in lakes and reservoirs with the hypoxic factor. Lake Reserv Manag. 18(4):299–306.
  • Palmer ME, Yan ND, Somers KM. 2014. Climate change drives coherent trends in physics and oxygen content in North American lakes. Clim Change. 124:285–299.
  • Pilla RM, Couture RM. 2021. Attenuation of photosynthetically active radiation and ultraviolet radiation in response to changing dissolved organic carbon in browning lakes: modeling and parametrization. Limnol Oceanogr. 66(6):2278–2289.
  • Pilla RM, Williamson CE, Adamovich BV, Adrian R, Anneville O, Chandra S, Colom-Montero W, Devlin SP, Dix MA, Dokulil MT. 2020. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci Rep. 10(1):20514.
  • Pilla RM, Williamson CE. 2022. Earlier ice breakup induces changepoint responses in duration and variability of spring mixing and summer stratification in dimictic lakes. Limnol Oceanogr. 67:S173–S183.
  • Plumb JM, Blanchfield PJ. 2009. Performance of temperature and dissolved oxygen criteria to predict habitat use by lake trout (Salvelinus namaycush). Can J Fish Aquat Sci. 66(11):2011–2023.
  • Pollock M, Clarke L, Dubé M. 2007. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ Rev. 15(NA):1–14.
  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing.
  • Rhodes J, Hetzenauer H, Frassl MA, Rothhaupt K-O, Rinke K. 2017. Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance. Ambio. 46(5):554–565.
  • Richardson DC, Melles SJ, Pilla RM, Hetherington AL, Knoll LB, Williamson CE, Kraemer BM, Jackson JR, Long EC, Moore K. 2017. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across northeastern North America (1975–2014). Water. 9(6):442.
  • Rippey B, McSorley C. 2009. Oxygen depletion in lake hypolimnia. Limnol Oceanogr. 54(3):905–916.
  • Roberts JJ, Höök TO, Ludsin SA, Pothoven SA, Vanderploeg HA, Brandt SB. 2009. Effects of hypolimnetic hypoxia on foraging and distributions of Lake Erie yellow perch. J Exp Mar Biol Ecol. 381:S132–S142.
  • Rogora M, Buzzi F, Dresti C, Leoni B, Lepori F, Mosello R, Patelli M, Salmaso N. 2018. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia. 824:33–50.
  • Rosa F, Burns NM. 1987. Lake Erie central basin oxygen depletion changes from 1929–1980. J Great Lakes Res. 13(4):684–696.
  • Rose KC, Winslow LA, Read JS, Hansen GJ. 2016. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol Ocean Lett. 1(1):44–53.
  • Rutherford J, Dumnov S, Ross A. 1996. Predictions of phosphorus in Lake Rotorua following load reductions. N Z J Mar Freshw Res. 30(3):383–396.
  • Salisbury FB, Ross CW. 1978. Plant physiology. Belmont (CA): Wadsworth Publishers.
  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Wat Res Assoc. 37(5):1169–1188.
  • Schwefel R, Steinsberger T, Bouffard D, Bryant LD, Müller B, Wüest A. 2018. Using small-scale measurements to estimate hypolimnetic oxygen depletion in a deep lake. Limnol Oceanogr. 63(S1):S54–S67.
  • Shapiro J. 1960. The cause of a metalimnetic minimum of dissolved oxygen 1. Limnol Oceanogr. 5(2):216–227.
  • Shatwell T, Thiery W, Kirillin G. 2019. Future projections of temperature and mixing regime of European temperate lakes European temperate lakes. Hydrol Earth Syst Sci. 23(3):1533–1551.
  • Spoor W. 1990. Distribution of fingerling brook trout, Salvelinus fontinalis (Mitchill), in dissolved oxygen concentration gradients. J Fish Biol. 36(3):363–373.
  • Stadelmann P. 1971. Stickstoffkreislauf und primärproduktion im mesotrophen Vierwaldstättersee (Horwer Bucht) und im eutrophen Rotsee, mit besonderer berücksichtigung des nitrats als limitierenden factors [Nitrogen cycle and primary production in the mesotrophic Lake Lucerne (Horwer Bucht) and the eutrophic Rotsee, with special consideration of nitrate as a limiting factor]. Schweiz Z Hydrol. 33(1):1–65.
  • St. John B, Carmack E, Daley R, Gray C, Pharo C. 1976. The limnology of Kamloops Lake, British Columbia. Vancouver (BC): Environment Canada: Inland Waters Directorate Pacific and Yukon Region.
  • Steinsberger T, Müller B, Gerber C, Shafei B, Schmid M. 2019. Modeling sediment oxygen demand in a highly productive lake under various trophic scenarios. PLoS One. 14(10):e0222318.
  • Steinsberger T, Schwefel R, Wüest A, Müller B. 2020. Hypolimnetic oxygen depletion rates in deep lakes: effects of trophic state and organic matter accumulation. Limnol Oceanogr. 65(12):3128–3138.
  • Steinsberger T, Wüest A, Müller B. 2021. Net ecosystem production of lakes estimated from hypolimnetic organic carbon sinks. Water Resour Res. 57(5):e2020WR029473.
  • Straile D, Jöhnk K, Henno R. 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol Oceanogr. 48(4):1432–1438.
  • Trolle D, Hamilton DP, Pilditch CA, Duggan IC, Jeppesen E. 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: implications for lake restoration and management. Environ Model Softw. 26(4):354–370.
  • Turner RE, Rabalais NN, Swenson E, Kasprzak M, Romaire T. 2005. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995. Mar Environ Res. 59(1):65–77.
  • Van Bocxlaer B, Schultheiss R, Plisnier PD, Albrecht C. 2012. Does the decline of gastropods in deep water herald ecosystem change in lakes Malawi and Tanganyika? Freshw Biol. 57(8):1733–1744.
  • Vant W. 1987. Hypolimnetic dissolved oxygen: survey and interpretation. Wellington (New Zealand): Lake Managers Handbook NWASCA.
  • Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA. 105(40):15452–15457.
  • Vincent W, Gibbs M, Dryden S. 1984. Accelerated eutrophication in a New Zealand lake: Lake Rotoiti, central North Island. N Z J Mar Freshw Res. 18(4):431–440.
  • Von Zimmerman U. 1969. Okologische und physiologische untersucnungen un der plaktiaehen blaralge Oseillatorla rubescens D. C. inter besonderer berucksichtigung von lieht und temperatur [Ecological and physiological studies on the plaktiae algae Oseillatorla rubescens D. C. with special consideration of light and temperature]. Schweiz Z Hydrol. 38:71–96.
  • Von Zimmermann U, Suter-Weider P. 1976. Beiträge zur limnologie des walen-, zürich-ober-und zürichsees [Contributions to the limnology of Lake Walen and Lake Zurich]. Schweiz Z Hydrol. 38(2):71–96.
  • Wetzel RG. 2001. Limnology: lake and river ecosystems. Houston (TX): Gulf Publishing.
  • Winder M, Schindler DE. 2004. Climatic effects on the phenology of lake processes. Global Change Biol. 10(11):1844–1856.
  • Winslow LA, Read JS, Hansen GJ, Hanson PC. 2015. Small lakes show muted climate change signal in deepwater temperatures. Geophys Res Lett. 42(2):355–361.
  • Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S. 2020. Global lake responses to climate change. Nat Rev Earth Env. 1(8):388–403.
  • Woolway RI, Merchant CJ. 2019. Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci. 12(4):271–276.
  • Woolway RI, Sharma S, Weyhenmeyer GA, Debolskiy A, Golub M, Mercado-Bettín D, Perroud M, Stepanenko V, Tan Z, Grant L. 2021. Phenological shifts in lake stratification under climate change. Nat Commun. 12(1):2318.