81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bubble sizes inferred from bubble gas composition in a temperate freshwater fish pond

ORCID Icon, , , &
Received 02 Aug 2023, Accepted 04 Mar 2024, Accepted author version posted online: 07 Mar 2024
Accepted author version

References

  • Algar, C.K., Boudreau, B.P., 2010. Stability of bubbles in a linear elastic medium: Implications for bubble growth in marine sediments. J. Geophys. Res. 115, F03012. https://doi.org/10.1029/2009JF001312
  • Algar, C.K., Boudreau, B.P., Barry, M.A., 2011. Release of multiple bubbles from cohesive sediments. Geophys. Res. Lett. 38. https://doi.org/10.1029/2011GL046870
  • Al-Lashi, R.S., Gunn, S.R., Webb, E.G., Czerski, H., 2018. A Novel High-Resolution Optical Instrument for Imaging Oceanic Bubbles. IEEE J. Ocean. Eng. 43, 72–82. https://doi.org/10.1109/JOE.2017.2660099
  • Avnimelech, Y., Ritvo, G., 2003. Shrimp and fish pond soils: processes and management. Aquaculture 220, 549–567. https://doi.org/10.1016/S0044-8486(02)00641-5
  • Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A., 2011. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 331, 50–50. https://doi.org/10.1126/science.1196808
  • Boehrer, B., Jordan, S., Leng, P., Waldemer, C., Schwenk, C., Hupfer, M., Schultze, M., 2021. Water | Free Full-Text | Gas Pressure Dynamics in Small and Mid-Size Lakes [WWW Document]. URL https://www.mdpi.com/2073-4441/13/13/1824 (accessed 3.24.22).
  • Brennwald, M.S., Kipfer, R., Imboden, D.M., 2005. Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water. Earth Planet. Sci. Lett. 235, 31–44. https://doi.org/10.1016/j.epsl.2005.03.004
  • Casper, P., Maberly, S.C., Hall, G.H., Finlay, B.J., 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49, 1–19. https://doi.org/10.1023/A:1006269900174
  • De Swart, J.W.A., van Vliet, R.E., Krishna, R., 1996. Size, structure and dynamics of “large” bubbles in a two-dimensional slurry bubble column. Chem. Eng. Sci. 51, 4619–4629. https://doi.org/10.1016/0009-2509(96)00265-5
  • DelSontro, T., McGinnis, D.F., Sobek, S., Ostrovsky, I., Wehrli, B., 2010. Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments. Environ. Sci. Technol. 44, 2419–2425. https://doi.org/10.1021/es9031369
  • DelSontro, T., McGinnis, D.F., Wehrli, B., Ostrovsky, I., 2015. Size Does Matter: Importance of Large Bubbles and Small-Scale Hot Spots for Methane Transport. Environ. Sci. Technol. 49, 1268–1276. https://doi.org/10.1021/es5054286
  • Delwiche, K.B., Hemond, H.F., 2017a. An enhanced bubble size sensor for long-term ebullition studies. Limnol. Oceanogr. Methods 15, 821–835. https://doi.org/10.1002/lom3.10201
  • Delwiche, K.B., Hemond, H.F., 2017b. Methane Bubble Size Distributions, Flux, and Dissolution in a Freshwater Lake. Environ. Sci. Technol. 51, 13733–13739. https://doi.org/10.1021/acs.est.7b04243
  • Greinert, J., McGinnis, D.F., 2009. Single bubble dissolution model – The graphical user interface SiBu-GUI. Environ. Model. Softw. 24, 1012–1013. https://doi.org/10.1016/j.envsoft.2008.12.011
  • Greinert, J., Nützel, B., 2004. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo-Mar. Lett. 24, 75–85. https://doi.org/10.1007/s00367-003-0165-7
  • Hornafius, J.S., Quigley, D., Luyendyk, B.P., 1999. The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. J. Geophys. Res. Oceans 104, 20703–20711. https://doi.org/10.1029/1999JC900148
  • Ivanova, I.N., Budnikov, A.A., Malakhova, T.V., Grishanina, N.A., Dyemin, I.D., 2022. Monitoring the Bubble Flux of a Shallow-Water Seep Using Passive Acoustics with Allowance for the Effect of the Type of Underlying Surface. Bull. Russ. Acad. Sci. Phys. 86, 190–193. https://doi.org/10.3103/S1062873822020113
  • Johnson, B.D., Boudreau, B.P., Gardiner, B.S., Maass, R., 2002. Mechanical response of sediments to bubble growth. Mar. Geol. 187, 347–363. https://doi.org/10.1016/S0025-3227(02)00383-3
  • Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T., Ojala, A., 2006. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51, 1195–1204. https://doi.org/10.4319/lo.2006.51.2.1195
  • Katsman, R., Ostrovsky, I., Makovsky, Y., 2013. Methane bubble growth in fine-grained muddy aquatic sediment: Insight from modeling. Earth Planet. Sci. Lett. 377–378, 336–346. https://doi.org/10.1016/j.epsl.2013.07.011
  • Koschorreck, M., Hentschel, I., Boehrer, B., 2017. Oxygen Ebullition From Lakes: Oxygen Ebullition From Lakes. Geophys. Res. Lett. 44, 9372–9378. https://doi.org/10.1002/2017GL074591
  • Kosten, S., Almeida, R.M., Barbosa, I., Mendonça, R., Santos Muzitano, I., Sobreira Oliveira-Junior, E., Vroom, R.J.E., Wang, H.-J., Barros, N., 2020. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Sci. Total Environ. 748, 141247. https://doi.org/10.1016/j.scitotenv.2020.141247
  • Langenegger, T., Vachon, D., Donis, D., McGinnis, D.F., 2019. What the bubble knows: Lake methane dynamics revealed by sediment gas bubble composition. Limnol. Oceanogr. 64, 1526–1544. https://doi.org/10.1002/lno.11133
  • Leifer, I., Patro, R.K., 2002. The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study. Cont. Shelf Res., Gas in Marine Sediments: Contributions from the 5th International Conference orgainsed by the Shallow Gas Group, Bologna, Italy, September 1998 22, 2409–2428. https://doi.org/10.1016/S0278-4343(02)00065-1
  • Leifer, I., Tang, D., 2006. The acoustic signature of marine seep bubbles. J. Acoust. Soc. Am. 121, EL35–EL40. https://doi.org/10.1121/1.2401227
  • Long, M.H., Sutherland, K., Wankel, S.D., Burdige, D.J., Zimmerman, R.C., 2020. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnol. Oceanogr. 65, 314–324. https://doi.org/10.1002/lno.11299
  • Madigan, M.T., Martinko, J.M., 2006. Brock Mikrobiologie, 11th ed. Pearson Studium, München.
  • McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E., Wüest, A., 2006. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? - McGinnis - 2006 - Journal of Geophysical Research: Oceans - Wiley Online Library [WWW Document]. URL https://doi.org/10.1029/2005JC003183 (accessed 3.24.22).
  • McGinnis, D.F., Lorke, A., Wüest, A., Stöckli, A., Little, J.C., 2004. Interaction between a bubble plume and the near field in a stratified lake: BUBBLE PLUME LAKE INTERACTION. Water Resour. Res. 40. https://doi.org/10.1029/2004WR003038
  • Miyake, Y., 1951. The Possibility and the Allowable Limit of Formation of Air Bubbles in the Sea [WWW Document]. URL https://www.jstage.jst.go.jp/article/mripapers1950/2/1/2_95/_article/-char/ja/ (accessed 3.24.22).
  • Ostrovsky, I., 2003. Methane bubbles in Lake Kinneret: Quantification and temporal and spatial heterogeneity. Limnol. Oceanogr. 48, 1030–1036. https://doi.org/10.4319/lo.2003.48.3.1030
  • Ostrovsky, I., McGinnis, D.F., Lapidus, L., Eckert, W., 2008. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnol. Oceanogr. Methods 6, 105–118. https://doi.org/10.4319/lom.2008.6.105
  • R Core Team, 2019. R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).
  • Reeburgh, W.S., 1969. Observations of Gases in Chesapeake Bay Sediments1. Limnol. Oceanogr. 14, 368–375. https://doi.org/10.4319/lo.1969.14.3.0368
  • Rosentreter, J.A., Borges, A.V., Deemer, B.R., Holgerson, M.A., Liu, S., Song, C., Melack, J., Raymond, P.A., Duarte, C.M., Allen, G.H., Olefeldt, D., Poulter, B., Battin, T.I., Eyre, B.D., 2021. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230. https://doi.org/10.1038/s41561-021-00715-2
  • Sander, R., 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chem. Phys. 15, 4399–4981. https://doi.org/10.5194/acp-15-4399-2015
  • Scandella, B.P., Varadharajan, C., Hemond, H.F., Ruppel, C., Juanes, R., 2011. A conduit dilation model of methane venting from lake sediments: METHANE VENTING FROM LAKE SEDIMENTS. Geophys. Res. Lett. 38, n/a-n/a. https://doi.org/10.1029/2011GL046768
  • Sirhan, S.T., Katsman, R., Lazar, M., 2019. Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors | Environmental Science & Technology. Environ. Sci. Technol.
  • Vagle, S., McNeil, C., Steiner, N., 2010. Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen. J. Geophys. Res. Oceans 115. https://doi.org/10.1029/2009JC005990
  • Waldemer, C., Koschorreck, M., 2023. Spatial and temporal variability of greenhouse gas ebullition from temperate freshwater fish ponds. Aquaculture.
  • Weiland, P., 2010. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860. https://doi.org/10.1007/s00253-009-2246-7
  • Zhang, Y., Tang, K.W., Yang, P., Yang, H., Tong, C., Song, C., Tan, L., Zhao, G., Zhou, X., Sun, D., 2022. Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices. Agric. Ecosyst. Environ. 338, 108110. https://doi.org/10.1016/j.agee.2022.108110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.