367
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

To go or not to go? Pupillometry elucidates inhibitory mechanisms in motor imagery

&
Pages 466-483 | Received 25 Oct 2017, Accepted 29 Mar 2018, Published online: 06 Apr 2018

References

  • Albert, J., López-Martín, S., Hinojosa, J. A., & Carretié, L. (2013). Spatiotemporal characterization of response inhibition. Neuroimage, 76(1), 272–281. doi: 10.1016/j.neuroimage.2013.03.011
  • Alnæs, D., Sneve, M., Espeseth, T., Endestad, T., de Pavert, S., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14(4), 1–1. doi: 10.1167/14.4.1
  • Angelini, M., Calbi, M., Ferrari, A., Sbriscia-Fioretti, B., Franca, M., Gallese, V., & Umiltà, M. A. (2015). Motor inhibition during overt and covert actions: An electrical neuroimaging study. PLoS One, 10(5), e0126800. doi: 10.1371/journal.pone.0126800
  • Anguera, J., Lyman, K., Zanto, T., Bollinger, J., & Gazzaley, A. (2013). Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects. Frontiers in Psychology, 4, 649. doi: 10.3389/fpsyg.2013.00649
  • Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4), 177–185. doi: 10.1016/j.tics.2013.12.003
  • Arora, S., Aggarwal, R., Sirimanna, P., Moran, A., Grantcharov, T., Kneebone, R., … Darzi, A. (2011). Mental practice enhances surgical technical skills: A randomized controlled study. Annals of Surgery, 253(2), 265–270. doi: 10.1097/SLA.0b013e318207a789
  • Avanzino, L., Gueugneau, N., Bisio, A., Ruggeri, P., Papaxanthis, C., & Bove, M. (2015). Motor cortical plasticity induced by motor learning through mental practice. Frontiers in Behavioral Neuroscience, 9, 105. doi: 10.3389/fnbeh.2015.00105
  • Batula, A., Mark, J., Kim, Y., & Ayaz, H. (2017). Comparison of brain activation during motor imagery and motor movement using fNIRS. Computational Intelligence and Neuroscience, 2017, 1–12. doi: 10.1155/2017/5491296
  • Bayer, M., Sommer, W., & Schacht, A. (2011). Emotional words impact the mind but not the body: Evidence from pupillary responses. Psychophysiology, 48(11), 1554–1562. doi: 10.1111/j.1469-8986.2011.01219.x
  • Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276–292. doi: 10.1037/0033-2909.91.2.276
  • Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 142–162). Cambridge: Cambridge University Press.
  • Bernardi, N., De Buglio, M., Trimarchi, P., Chielli, A., & Bricolo, E. (2013). Mental practice promotes motor anticipation: Evidence from skilled music performance. Frontiers in Human Neuroscience, 7, 451. doi: 10.3389/fnhum.2013.00451
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. doi: 10.1016/j.tics.2011.12.010
  • Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. doi: 10.1038/nrn3475
  • Collet, C., Guillot, A., Lebon, F., MacIntyre, T., & Moran, A. (2011). Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exercise and Sport Sciences Reviews, 39(2), 85–92. doi: 10.1097/JES.0b013e31820ac5e0
  • Cooley, S. J., Williams, S. E., Burns, V. E., & Cumming, J. (2013). Methodological variations in guided imagery interventions using movement imagery scripts in sport: A systematic review. Journal of Imagery Research in Sport and Physical Activity, 8(1), 1–22. doi: 10.1515/jirspa-2012-0005
  • Daniels, L. B., Nichols, D. F., Seifert, M. S., & Hock, H. S. (2012). Changes in pupil diameter entrained by cortically initiated changes in attention. Visual Neuroscience, 29(2), 131–142. doi: 10.1017/S0952523812000077
  • Di Rienzo, F., Debarnot, U., Daligault, S., Saruco, E., Delpuech, C., Doyon, J., … Guillot, A. (2016). Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Frontiers in Human Neuroscience, 10(2016), 315. doi: 10.3389/fnhum.2016.00315
  • Di Rienzo, F., Guillot, A., Daligault, S., Delpuech, C., Rode, G., & Collet, C. (2014). Motor inhibition during motor imagery: A MEG study with a quadriplegic patient. Neurocase, 20(5), 524–539. doi: 10.1080/13554794.2013.826685
  • Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79(4), 481–492. doi: 10.1037/0021-9010.79.4.481
  • Eckstein, M. K., Guerra-Carrillo, B., Miller Singley, A. T., & Bunge, S. A. (2017). Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Developmental Cognitive Neuroscience, 25, 69–91. doi: 10.1016/j.dcn.2016.11.001
  • Einhäuser, W., Koch, C., & Carter, O. L. (2010). Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience, 4), doi: 10.3389/fnhum.2010.00018
  • Ficarella, S. C., & Battelli, L. (2017). The critical role of the dorsal fronto-median cortex in voluntary action inhibition: A TMS study. Brain Stimulation, 10(3), 596–603. doi: 10.1016/j.brs.2016.12.009
  • Gerardin, E., Sirigu, A., Léhericy, S., Poline, J., Gaymard, B., Marsault, C., & Le Bihan, D. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10(11), 1093–1104. doi: 10.1093/cercor/10.11.1093
  • Gonzalez-Villar, A., Bonilla, F., & Carrillo-de-la-Pena, M. (2016). When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks. Cognitive Affective & Behavioral Neuroscience, 16(5), 825–835. doi: 10.3758/s13415-016-0434-3
  • Greenhouse, I., Oldenkamp, C. L., & Aron, A. R. (2012). Stopping a response has global or nonglobal effects on the motor system depending on preparation. Journal of Neurophysiology, 107(1), 384–392. doi: 10.1152/jn.00704.2011
  • Grosprêtre, S., Ruffino, C., & Lebon, F. (2015). Motor imagery and cortico-spinal excitability: A review. European Journal of Sport Science, 16(3), 317–324. doi: 10.1080/17461391.2015.1024756
  • Guillot, A., Di Rienzo, F., MacIntyre, T., Moran, A., & Collet, C. (2012). Imagining is not doing but involves specific motor commands: A review of experimental data related to motor inhibition. Frontiers in Human Neuroscience, 6(September), 247. doi: 10.3389/fnhum.2012.00247
  • Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology, 5(1), 3–22. doi: 10.1080/1750984X.2011.623787
  • Guillot, A., Lebon, F., Rouffet, D., Champely, S., Doyon, J., & Collet, C. (2007). Muscular responses during motor imagery as a function of muscle contraction types. International Journal of Psychophysiology, 66(1), 18–27. doi:10.1016/j.ijpsvcho.2007.05.009 doi: 10.1016/j.ijpsycho.2007.05.009
  • Hétu, S., Grégoire, M., Saimpont, A., Coll, M., Eugène, F., Michon, P., & Jackson, P. L. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 37(5), 930–949. doi: 10.1016/j.neubiorev.2013.03.017
  • Hochmann, J.-R., & Papeo, L. (2014). The invariance problem in infancy: A pupillometry study. Psychological Science, 25(11), 2038–2046. doi: 10.1177/0956797614547918
  • Hupé, J., Lamirel, C., & Lorenceau, J. (2009). Pupil dynamics during bistable motion perception. Journal of Vision, 9(7), 10–10. doi: 10.1167/9.7.10
  • Jackson, I., & Sirois, S. (2009). Infant cognition: Going full factorial with pupil dilation. Developmental Science, 12(4), 670–679. doi: 10.1111/j.1467-7687.2008.00805.x
  • Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(2), 187–202. doi: 10.1017/S0140525X00034026
  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14(1), S103–S109. doi: 10.1006/nimg.2001.0832
  • Jeannerod, M. (2004). Actions from within. International Journal of Sport and Exercise Psychology, 2(4), 376–402. doi: 10.1080/1612197X.2004.9671752
  • Jeannerod, M. (2006). Motor cognition: What actions tell the self. Oxford: Oxford University Press.
  • Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.
  • Kahneman, D. (2011). Thinking fast and slow. London: Allen Lane.
  • Katidioti, I., Borst, J. P., & Taatgen, N. A. (2014). What happens when we switch tasks: Pupil dilation in multitasking. Journal of Experimental Psychology: Applied, 20(4), 380–396. doi: 10.1037/xap0000031
  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—a review. Psychological Bulletin, 136(5), 849–874. doi: 10.1037/a0019842
  • Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin & Review, 17(1), 1–14. doi: 10.3758/PBR.17.1.1
  • Kuhtz-Buschbeck, J., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. European Journal of Neuroscience, 18(12), 3375–3387. doi:10.1046/j.1460-9568.2003.03066.x doi: 10.1111/j.1460-9568.2003.03066.x
  • Lee, G., Ojha, A., Kang, J., & Lee, M. (2015). Modulation of resource allocation by intelligent individuals in linguistic, mathematical and visuo-spatial tasks. International Journal of Psychophysiology, 97(1), 14–22. doi: 10.1016/j.ijpsycho.2015.04.013
  • Lotze, M. (2013). Kinaesthetic imagery of musical performance. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2013.00280
  • Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., … Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. Journal of Cognitive Neuroscience, 11(5), 491–501. doi: 10.1162/089892999563553
  • MacDonald, H., McMorland, A., Stinear, C., Coxon, J., & Byblow, W. (2017). An activation threshold model for response inhibition. Plos One, 12(1), e0169320. doi: 10.1371/journal.pone.0169320
  • Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage, 59(3), 2798–2807. doi: 10.1016/j.neuroimage.2011.09.083
  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. doi: 10.1006/cogp.1999.0734
  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. doi: 10.1016/S1364-6613(03)00028-7
  • Moran, A., Guillot, A., MacIntyre, T., & Collet, C. (2012). Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology. British Journal of Psychology, 103(2), 224–247. doi: 10.1111/j.2044-8295.2011.02068.x
  • Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326. doi: 10.1016/j.brainresrev.2008.12.024
  • Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35, 4140–4154. doi: 10.1002/hbm.22466
  • Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856–869. doi: 10.1038/nrn2478
  • Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 1–17. doi: 10.3758/CABN.7.1.1
  • Obayashi, Y., Uemura, J., & Hoshiyama, M. (2017). Functional inter-cortical connectivity among motor-related cortices during motor imagery: A magnetoencephalographic study. Somatosensory and Motor Research, 34(1), 1–8. doi: 10.1080/08990220.2016.1257985
  • O’Connor, D. A., Upton, D. J., Moore, J., & Hester, R. (2015). Motivationally significant self-control: Enhanced action withholding involves the right inferior frontal junction. Journal of Cognitive Neuroscience, 27(1), 112–123. doi: 10.1162/jocn_a_00695
  • O’Shea, H., & Moran, A. (2017). Does motor simulation theory explain the cognitive mechanisms underlying motor imagery? A critical review. Frontiers in Human Neuroscience, 11), doi: 10.3389/fnhum.2017.00072
  • Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P., & Albani, M. (2007). Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort. Brain and Cognition, 64(1), 74–85. doi: 10.1016/j.bandc.2007.01.001
  • Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation: Ending the imagery debate. Proceedings of the National Academy of Sciences, 112(33), 10089–10092. doi: 10.1073/pnas.1504933112
  • Peysakhovich, V., Causse, M., Scannella, S., & Dehais, F. (2015). Frequency analysis of a task-evoked pupillary response: Luminance-independent measure of mental effort. International Journal of Psychophysiology, 97(1), 30–37. doi: 10.1016/j.ijpsycho.2015.04.019
  • Richer, F., Silverman, C., & Beatty, J. (1983). Response selection and initiation in speeded reactions: A pupillometric analysis. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 360–370. doi: 10.1037/0096-1523.9.3.360
  • Ridderinkhof, K., & Brass, M. (2015). How kinesthetic motor imagery works: A predictive-processing theory of visualization in sports and motor expertise. Journal of Physiology-Paris, 109(1-3), 53–63. doi: 10.1016/j.jphysparis.2015.02.003
  • Ridderinkhof, K. R., Forstmann, B. U., Wylie, S. A., Burle, B., & van den Wildenberg, W. P. M. (2011). Neurocognitive mechanisms of action control: Resisting the call of the sirens. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2), 174–192. doi: 10.1002/wcs.99
  • Ridderinkhof, K. R., van den Wildenberg, W. P. M., & Brass, M. (2014). “Don’t ‘versus’ won’t”: Principles, mechanisms, and intention in action inhibition. Neuropsychologia, 65, 255–262. doi: 10.1016/j.neuropsychologia.2014.09.005
  • Rieger, M., Dahm, S., & Koch, I. (2017). Inhibition in motor imagery: A novel action mode switching paradigm. Psychonomic Bulletin & Review, 24(2), 459–466. doi: 10.3758/s13423-016-1095-5
  • Roberts, R., Callow, N., Hardy, L., Markland, D., & Bringer, J. (2008). Movement imagery ability: Development and assessment of a revised version of the vividness of movement imagery questionnaire. Journal of Sport and Exercise Psychology, 30(2), 200–221. doi: 10.1123/jsep.30.2.200
  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124.
  • Sebastian, A., Pohl, M. F., Klöppel, S., Feige, B., Lange, T., Stahl, C., … Tüscher, O. (2013). Disentangling common and specific neural subprocesses of response inhibition. Neuroimage, 64(1), 601–615. doi: 10.1016/j.neuroimage.2012.09.020
  • Sharma, N., & Baron, J. (2013). Does motor imagery share neural networks with executed movement: A multivariate fMRI analysis. Frontiers in Human Neuroscience, 7, 564. doi: 10.3389/fnhum.2013.00564
  • Sirois, S., & Brisson, J. (2014). Pupillometry. Wiley Interdisciplinary Reviews: Cognitive Science, 5(6), 679–692. doi: 10.1002/wcs.1323
  • Smith, A., Brice, C., Nash, J., Rich, N., & Nutt, D. J. (2003). Caffeine and central noradrenaline: Effects on mood, cognitive performance, eye movements and cardiovascular function. Journal of Psychopharmacology, 17(3), 283–292. doi: 10.1177/02698811030173010
  • Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica, 106(1), 147–246. doi: 10.1016/S0001-6918(00)00045-7
  • Stinear, C. M. (2010). Corticospinal facilitation during motor imagery. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (pp. 47–61). Oxford: Oxford University Press.
  • Swick, D., Ashley, V., & Turken, U. (2011). Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage, 56(3), 1655–1665. doi: 10.1016/j.neuroimage.2011.02.070
  • van Gaal, S., Ridderinkhof, K. R., Scholte, H. S., & Lamme, V. A. F. (2010). Unconscious activation of the prefrontal no-go network. Journal of Neuroscience, 30(11), 4143–4150. doi: 10.1523/JNEUROSCI.2992-09.2010
  • Verbruggen, F., McLaren, I. P. L., & Chambers, C. D. (2014). Banishing the control homunculi in studies of action control and behavior change. Perspectives on Psychological Science, 9(5), 497–524. doi: 10.1177/1745691614526414
  • Vidal, F., Burle, B., Grapperon, J., & Hasbroucq, T. (2011). An ERP study of cognitive architecture and the insertion of mental processes: Donders revisited. Psychophysiology, 48(9), 1242–1251. doi: 10.1111/j.1469-8986.2011.01186.x
  • Weinberg, R. S. (2008). Does imagery work? Effects on performance and mental skills. Journal of Imagery Research in Sport and Physical Activity, 3(1). doi: 10.2202/1932-0191.1025
  • White, O., & French, R. M. (2017). Pupil diameter may reflect motor control and learning. Journal of Motor Behavior, 49(2), 141–149. doi: 10.1080/00222895.2016.1161593
  • Wylie, G., & Allport, A. (2000). Task switching and the measurement of “switch costs”. Psychological Research, 63. doi: 10.1007/s004269900003
  • Zhang, R., Zhang, T., Liu, T., Liu, D., Li, M., Li, F., … Xu, P. (2016). Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. Neuroimage, 134, 475–485. doi: 10.1016/j.neuroimage.2016.04.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.