132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of conditional learning abilities in children from 3 to 12 years of age

ORCID Icon, ORCID Icon & ORCID Icon
Pages 248-269 | Received 12 Jun 2023, Accepted 10 Jan 2024, Published online: 14 Feb 2024

References

  • Acuna, B. D., Eliassen, J. C., Donoghue, J. P., & Sanes, J. N. (2002). Frontal and parietal lobe activation during transitive inference in humans. Cerebral Cortex, 12(12), 1312–1321. https://doi.org/10.1093/cercor/12.12.1312
  • Alvarado, M. C., Malkova, L., & Bachevalier, J. (2016). Development of relational memory processes in monkeys. Developmental Cognitive Neuroscience, 22, 27–35. https://doi.org/10.1016/j.dcn.2016.10.007
  • Andersen, P., Morris, R., Amaral, D. G., Bliss, T., & O'Keefe, J. (2006). The hippocampus book. Oxford University Press.
  • Andrews, G., & Halford, G. S. (1998). Children's ability to make transitive inferences: The importance of premise integration and structural complexity. Cognitive Development, 13(4), 479–513. https://doi.org/10.1016/S0885-2014(98)90004-1
  • Backus, A. R., Schoffelen, J.-M., Szebényi, S., Hanslmayr, S., & Doeller, C. F. (2016). Hippocampal-prefrontal theta oscillations support memory integration. Current Biology, 26(4), 450–457. https://doi.org/10.1016/j.cub.2015.12.048
  • Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 319(5870), 1640–1642. https://doi.org/10.1126/science.1152882
  • Bochud-Fragnière, E., Banta Lavenex, P., & Lavenex, P. (2022). What is the weather prediction task good for? A new analysis of learning strategies reveals how young adults solve the task. Frontiers in Psychology, 13, Article 886339. https://doi.org/10.3389/fpsyg.2022.886339
  • Bochud-Fragnière, E., Lavenex, P., & Banta Lavenex, P. (2023). When and how do children solve the weather prediction task? Developmental Psychobiology, 65(6), e22407. https://doi.org/10.1002/dev.22407
  • Bostelmann, M., Bochud-Fragniere, E., Costanzo, F., Di Vara, S., Menghini, D., Vicari, S., Lavenex, P., & Banta Lavenex, P. (2017). Dissociation of spatial memory systems in Williams syndrome. Hippocampus, 27(11), 1192–1203. https://doi.org/10.1002/hipo.22764
  • Bostelmann, M., Costanzo, F., Martorana, L., Menghini, D., Vicari, S., Lavenex, P. B., & Lavenex, P. (2018). Low-resolution place and response learning capacities in Down syndrome. Frontiers in Psychology, 9, 2049. https://doi.org/10.3389/fpsyg.2018.02049
  • Bostelmann, M., Ruggeri, P., Circelli, A., Costanzo, F., Menghini, D., Vicari, S., Lavenex, P., & Banta Lavenex, P. (2020). Path integration and cognitive mapping capacities in Down and Williams syndromes. Frontiers in Psychology, 11, Article 571394. https://doi.org/10.3389/fpsyg.2020.571394
  • Bouwmeester, S., & Sijtsma, K. (2006). Constructing a transitive reasoning test for 6- to 13-year-old children. European Journal of Psychological Assessment, 22(4), 225–232. https://doi.org/10.1027/1015-5759.22.4.225
  • Bryant, P. E., & Trabasso, T. (1971). Transitive inferences and memory in young children. Nature, 232(5311), 456. https://doi.org/10.1038/232456a0
  • Caballero, A., Granberg, R., & Tseng, K. Y. (2016). Mechanisms contributing to prefrontal cortex maturation during adolescence. Neuroscience & Biobehavioral Reviews, 70, 4–12. https://doi.org/10.1016/j.neubiorev.2016.05.013
  • Carmer, S. G., & Swanson, M. R. (1973). Evaluation of 10 pairwise multiple comparison procedures by Monte-Carlo methods. Journal of the American Statistical Association, 68(341), 66–74. https://doi.org/10.1080/01621459.1973.10481335
  • Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33(3), 386–404. https://doi.org/10.1016/0022-0965(82)90054-6
  • Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. MIT Press.
  • DeVito, L. M., Kanter, B. R., & Eichenbaum, H. (2010). The hippocampus contributes to memory expression during transitive inference in mice. Hippocampus, 20(1), 208–217. https://doi.org/10.1002/hipo.20610
  • DeVito, L. M., Lykken, C., Kanter, B. R., & Eichenbaum, H. (2010). Prefrontal cortex: Role in acquisition of overlapping associations and transitive inference. Learning & Memory, 17(3), 161–167. https://doi.org/10.1101/lm.1685710
  • Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83(4), 764–770. https://doi.org/10.1016/j.neuron.2014.07.032
  • Gao, J., Su, Y., Tomonaga, M., & Matsuzawa, T. (2018). Learning the rules of the rock–paper–scissors game: Chimpanzees versus children. Primates, 59(1), 7–17. https://doi.org/10.1007/s10329-017-0620-0
  • Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177. https://doi.org/10.1037/0012-1649.40.2.177
  • Greene, A. J., Gross, W. L., Elsinger, C. L., & Rao, S. M. (2006). An fMRI analysis of the human hippocampus: Inference, context, and task awareness. Journal of Cognitive Neuroscience, 18(7), 1156–1173. https://doi.org/10.1162/jocn.2006.18.7.1156
  • Greene, A. J., Spellman, B. A., Dusek, J. A., Eichenbaum, H. B., & Levy, W. B. (2001). Relational learning with and without awareness: Transitive inference using nonverbal stimuli in humans. Memory & Cognition, 29(6), 893–902. https://doi.org/10.3758/Bf03196418
  • Halford, G. S. (1984). Can young children integrate premises in transitivity and serial order tasks? Cognitive Psychology, 16(1), 65–93. https://doi.org/10.1016/0010-0285(84)90004-5
  • Halford, G. S., & Kelly, M. E. (1984). On the basis of early transitivity judgments. Journal of Experimental Child Psychology, 38(1), 42–63. https://doi.org/10.1016/0022-0965(84)90018-3
  • Heckers, S., Zalesak, M., Weiss, A. P., Ditman, T., & Titone, D. (2004). Hippocampal activation during transitive inference in humans. Hippocampus, 14(2), 153–162. https://doi.org/10.1002/hipo.10189
  • Hirsh, R. (1980). The hippocampus, conditional operations, and cognition. Physiological Psychology, 8(2), 175–182. https://doi.org/10.3758/BF03332848
  • Jabes, A., Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2011). Postnatal development of the hippocampal formation: A stereological study in macaque monkeys. Journal of Comparative Neurology, 519(6), 1051–1070. https://doi.org/10.1002/cne.22549
  • Kallio, K. D. (1982). Developmental change on a five-term transitive inference. Journal of Experimental Child Psychology, 33(1), 142–164. https://doi.org/10.1016/0022-0965(82)90011-X
  • Keresztes, A., Bender, A. R., Bodammer, N. C., Lindenberger, U., Shing, Y. L., & Werkle-Bergner, M. (2017). Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. Proceedings of the National Academy of Sciences, 114(34), 9212–9217. https://doi.org/10.1073/pnas.1710654114
  • Lavenex, P., & Banta Lavenex, P. (2013). Building hippocampal circuits to learn and remember: Insights into the development of human memory. Behavioural Brain Research, 254, 8–21. https://doi.org/10.1016/j.bbr.2013.02.007
  • Lazareva, O. F. (2012). Transitive inference in nonhuman animals. In E. A. Wasserman & T. R. Zentall (Eds.), The Oxford handbook of comparative cognition (2nd ed., pp. 718–735). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195392661.013.0036
  • Lee, J. K., Ekstrom, A. D., & Ghetti, S. (2014). Volume of hippocampal subfields and episodic memory in childhood and adolescence. NeuroImage, 94, 162–171. https://doi.org/10.1016/j.neuroimage.2014.03.019
  • Libben, M., & Titone, D. (2008). The role of awareness and working memory in human transitive inference. Behavioural Processes, 77(1), 43–54. https://doi.org/10.1016/j.beproc.2007.06.006
  • Mou, Y., Province, J. M., & Luo, Y. (2014). Can infants make transitive inferences? Cognitive Psychology, 68, 98–112. https://doi.org/10.1016/j.cogpsych.2013.11.003
  • Nagode, J. C., & Pardo, J. V. (2002). Human hippocampal activation during transitive inference. Neuroreport, 13(7), 939–944. https://doi.org/10.1097/00001756-200205240-00008. https://www.ncbi.nlm.nih.gov/pubmed/12004195
  • Newcombe, N.S., Huttenlocher, J., Drummey, A.B., & Wiley, J.G. (1998). The development of spatial location coding: Place learning and dead reckoning in the second and third years. Cognitive Development , 13, 185–200. https://doi.org/10.1016/S0885-2014(98)90038-7
  • Ngo, C. T., Newcombe, N. S., & Olson, I. R. (2018). The ontogeny of relational memory and pattern separation. Developmental Science, 21(2), e12556. https://doi.org/10.1111/desc.12556
  • Pears, R., & Bryant, P. E. (1990). Transitive inferences by young children about spatial position. British Journal of Psychology, 81(4), 497–510. https://doi.org/10.1111/j.2044-8295.1990.tb02375.x
  • Ribordy Lambert, F., Jabes, A., Banta Lavenex, P., & Lavenex, P. (2013). Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cognitive Psychology, 66(1), 1–29. https://doi.org/10.1016/j.cogpsych.2012.08.001
  • Ridley, R. M., Timothy, C. J., Maclean, C. J., & Baker, H. F. (1995). Conditional learning and memory impairments following neurotoxic lesion of the CA1 field of the hippocampus. Neuroscience, 67(2), 263–275. https://doi.org/10.1016/0306-4522(95)00063-O
  • Riley, C. A., & Trabasso, T. (1974). Comparatives, logical structures, and encoding in a transitive inference task. Journal of Experimental Child Psychology, 17(2), 187–203. https://doi.org/10.1016/0022-0965(74)90065-4
  • Rothman, K. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1(1), 43–46. https://doi.org/10.1097/00001648-199001000-00010
  • Saville, D. J. (1990). Multiple comparison procedures—the practical solution. American Statistician, 44(2), 174–180. https://doi.org/10.2307/2684163
  • Schlichting, M. L., & Preston, A. R. (2015). Memory integration: Neural mechanisms and implications for behavior. Current Opinion in Behavioral Sciences, 1, 1–8. https://doi.org/10.1016/j.cobeha.2014.07.005
  • Schlichting, M. L., & Preston, A. R. (2016). Hippocampal–medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiology of Learning and Memory, 134, 91–106. https://doi.org/10.1016/j.nlm.2015.11.005
  • Smith, C., & Squire, L. R. (2005). Declarative memory, awareness, and transitive inference. The Journal of Neuroscience, 25(44), 10138–10146. https://doi.org/10.1523/JNEUROSCI.2731-05.2005
  • Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315. https://doi.org/10.1038/nn1008
  • Spence, K. W. (1952). The nature of the response in discrimination learning. Psychological Review, 59(1), 89. https://doi.org/10.1037/h0063067
  • Townsend, E. L., Richmond, J. L., Vogel-Farley, V. K., & Thomas, K. (2010). Medial temporal lobe memory in childhood: Developmental transitions. Developmental Science, 13(5), 738–751. https://doi.org/10.1111/j.1467-7687.2009.00935.x
  • VandenBos, G. R. (2007). APA dictionary of psychology. American Psychological Association.
  • Van Elzakker, M., O'Reilly, R. C., & Rudy, J. W. (2003). Transitivity, flexibility, conjunctive representations, and the hippocampus. I. An empirical analysis. Hippocampus, 13(3), 334–340. https://doi.org/10.1002/hipo.10083
  • Von Fersen, L., Wynne, C. D., Delius, J. D., & Staddon, J. E. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17(3), 334. https://doi.org/10.1037/0097-7403.17.3.334
  • Wright, B. C. (2006). On the emergence of the discriminative mode for transitive-inference. European Journal of Cognitive Psychology, 18(5), 776–800. https://doi.org/10.1080/09541440500334466
  • Wright, B. C. (2021). Towards a resolution of some outstanding issues in transitive research: An empirical test on middle childhood. Learning & Behavior, 49(2), 204–221. https://doi.org/10.3758/s13420-020-00440-7
  • Wright, B. C., & Dowker, A. D. (2002). The role of cues to differential absolute size in children's transitive inferences. Journal of Experimental Child Psychology, 81(3), 249–275. https://doi.org/10.1006/jecp.2001.2653
  • Wright, B. C., & Smailes, J. (2015). Factors and processes in children's transitive deductions. Journal of Cognitive Psychology, 27(8), 967–978. https://doi.org/10.1080/20445911.2015.1063641
  • Wynne, C. D. L. (1995). Reinforcement accounts for transitive inference performance. Animal Learning & Behavior, 23(2), 207–217. https://doi.org/10.3758/BF03199936
  • Yonelinas, A. P. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioural Brain Research, 254, 34–44. https://doi.org/10.1016/j.bbr.2013.05.030
  • Zalesak, M., & Heckers, S. (2009). The role of the hippocampus in transitive inference. Psychiatry Research, 172(1), 24–30. https://doi.org/10.1016/j.pscychresns.2008.09.008
  • Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168–179. https://doi.org/10.1016/j.neuron.2012.05.010
  • Zhang, X., Qiu, Y., Li, J., Jia, C., Liao, J., Chen, K., Qiu, L., Yuan, Z., & Huang, R. (2022). Neural correlates of transitive inference: An SDM meta-analysis on 32 fMRI studies. NeuroImage, 258, Article 119354. https://doi.org/10.1016/j.neuroimage.2022.119354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.