3,649
Views
5
CrossRef citations to date
0
Altmetric
Special Issue Article

Population modification of Anopheline species to control malaria transmission

&

References

  • WHO. World Malaria Report, 2015. World Health Organization; 2016. ISBN: 978 92 4 1511711.
  • Bhatt S, Weiss DJ, Cameron E, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–211.10.1038/nature15535
  • Barreaux P, Barreaux AMG, Sternberg ED, et al. Priorities for broadening the malaria vector control tool kit. Trends Parasitol. 2017 Oct;33(10):763–774.
  • Adelman Z. Genetic control of malaria and dengue. Oxford: Elsevier Academic Press; 2015.
  • Macias VM, James AA. Impact of genetic modification of vector populations on the malaria eradication agenda. In: Adelman Z, editor. Genetic control of malaria and dengue. Oxford: Elsevier Academic Press; 2015. p. 423–444.
  • Eckhoff PA, Wenger EA, Godfray HC, et al. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Nat Acad Sci USA. 2016;14(2):E255–E264.
  • Beaghton A, Hammond A, Nolan T, et al. Requirements for driving antipathogen effector genes into populations of disease vectors by Homing. Genetics. 2017 Apr;205(4):1587–1596.10.1534/genetics.116.197632
  • Curtis CF. Possible use of translocations to fix desirable genes in insect pest populations. Nature. 1968;218(5139):368–369.10.1038/218368a0
  • James AA, Peloquin JJ. Engineering resistance to malaria parasite development in mosquitoes. In: Sherwin IW, editor. Malaria: parasite biology, pathogenesis and protection. Washington (DC): ASM Press; 1998. p. 63–69.
  • Roberts A, Andrade PP, Okumu F, et al. Results from THE WOrkshop “Problem Formulation for the Use of Gene Drive in Mosquitoes”. Am J Trop Med Hyg 2017 Mar;96(3):530–533.
  • WHO. Guidance framework for testing of genetically modified mosquitoes. Geneva: WHO/TDR Publications; 2014. ISBN 978 92 4 150748 6.
  • Brown DM, James AA. Vector control – new approaches. In: Gubler DJ, Ooi EE, Vasudevan S, Farrar J, editors. Dengue and dengue hemorrhagic fever. 2nd ed. Wallingford: CAB International; 2014. p. 519–536.
  • Hardy JL, Houk EJ, Kramer LD, et al. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol. 1983;28:229–262.10.1146/annurev.en.28.010183.001305
  • Smith DL, Battle KE, Hay SI, et al. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012;8:e1002588.10.1371/journal.ppat.1002588
  • Meredith SE, James AA. Biotechnology as applied to vectors and vector control. Ann Parasitol Hum Comp. 1990;65(65 Suppl.):113–118.10.1051/parasite/1990651113
  • Collins FH, James AA. Genetic modification of mosquitoes. Sci Med. 1996;3:52–61.
  • Catteruccia F, Nolan T, Loukeris TG, Blass C, et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature. 2000;405(6789):959–962.10.1038/35016096
  • Grossman GL, Rafferty CS, Clayton JR, et al. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol. 2001;10:597–604.10.1046/j.0962-1075.2001.00299.x
  • Corby-Harris V, et al. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles Stephensi mosquitoes. PLoS Pathog. 2010;6:e1001003.10.1371/journal.ppat.1001003
  • Isaacs AT, Jasinskiene N, Tretiakov M, et al. Transgenic Anopheles stephensi co-expressing single-chain antibodies resist Plasmodium falciparum development. Proc Nat Acad Sci USA 2012: 109, E1922-E1930. PMID:22689959. PNAS PLUS; 109:11070–11071.
  • Braig HR, Yan G. The spread of genetic constructs in natural insect populations. In: Letourneau DK, Burrows BE, editors. Genetically engineered organisms: assessing environmental and human health effects. Washington (DC): CRC Press; 2002. p. 251–314.
  • James AA. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol. 2005;21:64–67.10.1016/j.pt.2004.11.004
  • Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2003;270(1518):921–928.10.1098/rspb.2002.2319
  • Gantz VM, Jasinskiene N, Tatarenkova O, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito, Anopheles stephensi. Proc Nat Acad Sci USA. 2015;112(49):E6736–E6743.10.1073/pnas.1521077112
  • Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2015;34(1):78–83.10.1038/nbt.3439
  • Akbari OS, Bellen HJ, Bier E, et al. Biosafety. Safeguarding gene drive experiments in the laboratory. Science. 2015;349(6251):927–929.10.1126/science.aac7932
  • NASEM (National Academies of Sciences, Engineering, and Medicine). Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. Washington (DC): The National Academies Press; 2016.
  • Adelman Z, Akbari O, Bauer J, et al. Rules of the road for insect gene drive research and testing. Nat Biotechnol. 2017 Aug 8;35(8):716–718.10.1038/nbt.3926
  • Pike A, Dong Y, Dizaji NB, et al. Changes in the microbiota cause genetically modified Anopheles to spread in a population. Science. 2017 Sep 29;357(6358):1396–1399. doi:10.1126/science.aak9691 . Epub 2017 Sep 28PMID:28963254.
  • Brown DM, Alphey LS, McKemey A, et al. Criteria for identifying and evaluating candidate sites for open-field trials of genetically engineered mosquitoes. Vector Borne Zoo Dis. 2014;14:291–299.10.1089/vbz.2013.1364
  • Marshall JM, Buchman A, Sánchez CHM, et al. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep. 2017;7:3776.
  • Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. 2017 May;46(1):505–529.10.1146/annurev-biophys-062215-010822
  • Champer J, Reeves R, Oh SY, et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 2017 Jul 20;13(7):e1006796.10.1371/journal.pgen.1006796
  • Hammond AM, Kyrou K, Bruttini M, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 2017 Oct 4;13(10):e1007039. DOI: 0.1371/journal.pgen.1007039. eCollection 2017 Oct.PMID:28976972.
  • Rasgon JL, Scott TW. Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes. Insect Biochem Mol Biol. 2004;34:707–713.10.1016/j.ibmb.2004.03.023
  • Wise de Valdez MR, Nimmo D, Betz J, et al. Genetic elimination of dengue vector mosquitoes. Proc Nat Acad Sci USA. 2011;108:4772–4775.10.1073/pnas.1019295108
  • Ramsey JM, Bond JG, Macotela ME, et al. A regulatory structure for working with genetically-modified mosquitoes: Lessons from Mexico. PLoS Negl Trop Dis. 2014;8(3):e2623.10.1371/journal.pntd.0002623
  • Carvalho DO, McKemey AR, Garziera L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015 Jul 2;9(7):e0003864.10.1371/journal.pntd.0003864
  • Target Malaria. http://targetmalaria.org/
  • Ungureanu E, Killick-Kendrick R, Garnham PC, et al. Pre-patent periods of a tropical strain of Plasmodium vivax after inoculations of ten-fold dilutions of sporozoites. Trans R Soc Trop Med Hyg. 1977;70:482–483.
  • Jasinskiene N, Coleman J, Ashikyan A, et al. Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system. Am J Trop Med Hyg. 2007;76:1072–1078.
  • Klassen W, Curtis CF. History of the sterile insect technique. In: Dyck, VA et al., editors. The sterile insect technique: principles and practice in area-wide integrated pest management. Washington (DC): Springer Pew Initiative. Bugs in the system: issues in the science and regulation of genetically modified insects; 2004. p. 3–36. .
  • Robert MA, Legros M, Facchinelli L, et al. Mathematical models as aids for design and development of experiments: the case of transgenic mosquitoes. J Med Entomol. 2012 Nov;49(6):1177–1188.10.1603/ME11205
  • Vella MR, Gunning CE, Lloyd AL, Gould F evaluating strategies for reversing CRISPR-Cas9 gene drives. Sci Rep 2017;7:11038.
  • DARPA. 2017. https://www.darpa.mil/news-events/2017-07-19
  • Pew Trusts PC. Washington (DC): Springer Pew Initiative. Bugs in the system: issues in the science and regulation of genetically modified insects; 2004.
  • Hoffmann AA, Montgomery BL, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476:454–457.10.1038/nature10356
  • Dame DA, Curtis CF, Benedict MQ, et al. Historical applications of induced sterilisation in field populations of mosquitoes. Malaria J. 2009;8(Suppl. 2):S2.10.1186/1475-2875-8-S2-S2
  • Yoshida S, Matsuoka H, Luo E, et al. A single-chain antibody fragment specific for the Plasmodium berghei ookinete protein Pbs21 confers transmission blockade in the mosquito midgut. Mol Biochem Parasitol. 1999;104(2):195–204.10.1016/S0166-6851(99)00158-9
  • Capurro K M, et al. Virus-expressed, recombinant single chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. Am J Trop Med Hyg. 2000;62:427–433.10.4269/ajtmh.2000.62.427
  • Isaacs AT, Li F, Jasinskiene N, et al. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog. 2011;7(4):e10002017.
  • Yoshida S, Ioka D, Matsuoka H, et al. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol. 2001;113(1):89–96.10.1016/S0166-6851(00)00387-X
  • Fang WG, Vega-Rodriguez J, Ghosh AK, et al. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011;331:1074–1077.
  • Barreau C, Touray M, Oimenta PF, et al. Plasmodium gallinaceum: sporozoite invasion of Aedes aegypti salivary glands is inhibited by anti-gland antibodies and by lectins. Exp Parasitol. 1995;81:332–343.10.1006/expr.1995.1124
  • Ito J, Ghosh A, Moreira LA, et al. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002;417:452–455.10.1038/417452a
  • Zieler H, Keister DB, Dvorak JA, et al. A snake venom phospholipase A2 blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. J Exp Biol. 2001;204:4157–4167.
  • Moreira LA, Ito J, Ghosh A, et al. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem. 2002;277:40839–40843.10.1074/jbc.M206647200
  • Tsai Y, Hayward RE, Langer RC, et al. Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut. Infect Immun. 2001;69:4048–4054.10.1128/IAI.69.6.4048-4054.2001
  • Gwadz RW, Kaslow D, Lee JY, et al. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun. 1989;57:2628–2633.
  • Shahabuddin M, Fields I, Bulet P, et al. Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp. Parasitol. 1998;89:103–112.10.1006/expr.1998.4212
  • Vizioli J, Bulet P, Hoffmann JA, et al. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Nat Acad Sci USA. 2001;98:12630–12635.10.1073/pnas.221466798
  • Moreira CK, Rodrigues FG, Ghosh A, et al. Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Exp Parasitol. 2007;116:346–353.10.1016/j.exppara.2007.01.022
  • Rodriguez MC, Zamudio F, Torres JA, et al. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp Parasitol. 1995;80:596–604.10.1006/expr.1995.1075
  • Luckhart S, Vodovotz Y, Cui L, et al. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Nat Acad Sci USA. 1998;95:5700–5705.10.1073/pnas.95.10.5700
  • Yoshida S, Shimada Y, Kondoh D, et al. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLoS Pathog. 2007;3:e192.10.1371/journal.ppat.0030192
  • Arrighi RB, Ebikeme C, Jiang Y, et al. Cell-Penetrating Peptide TP10 Shows Broad-Spectrum Activity against both Plasmodium falciparum and Trypanosoma brucei brucei. Antimicrob Agents Chemother. 2008;52:3414–3417.10.1128/AAC.01450-07
  • Gao B, Rodriguez Mdel C, Lanz-Mendoza H, et al. AdDLP, a bacterial defensin-like peptide, exhibits anti-Plasmodium activity. Biochem Biophys Res Commun. 2009;387:393–398.10.1016/j.bbrc.2009.07.043
  • Gao B, Xu J, Rodriguez Mdel C, et al. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie. 2010;92:350–359.10.1016/j.biochi.2010.01.011
  • Conde R, Zamudio FZ, Rodríguez MH, et al. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000;471:165–168.10.1016/S0014-5793(00)01384-3
  • Carballar-Lejarazu R, Rodríguez MH, de la Cruz Hernández-Hernández F, et al. Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci. 2008;65(19):3081–3092.10.1007/s00018-008-8250-8
  • Zhang G, Niu G, Franca CM, et al. Anopheles midgut FREP mediates Plasmodium invasion. J Biol Chem. 2015;290(27):16490–16501.10.1074/jbc.M114.623165
  • Dong Y, Das S, Cirimotich C, et al. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog. 2011;7:e1002458.10.1371/journal.ppat.1002458
  • Abraham EG, Donnelly-Doman M, Fujioka H, et al. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Mol Biol. 2005 Jun;14(3):271–279.10.1111/j.1365-2583.2004.00557.x
  • Nolan T, Petris E, Muller HM, et al. Analysis of two novel midgut-specific promoters driving transgene expression in Anopheles stephensi mosquitoes. PLoS ONE. 2011;6(2):e16471.10.1371/journal.pone.0016471
  • Chen XG, Marinotti O, Whitman L, et al. The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals. Am J Trop Med Hyg. 2007;76:1118–1124.
  • Yoshida S, Watanabe H. Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect Mol Biol. 2006;15:403–410.10.1111/imb.2006.15.issue-4
  • Lobardo F, Nolan T, Lycett G, et al. An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi. Insect Mol Bio. 2005;14:207–216.10.1111/imb.2005.14.issue-2