188
Views
8
CrossRef citations to date
0
Altmetric
Articles

An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis

, , , , , & show all

References

  • Sundar S, Rai M. Laboratory diagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol. 2002;9(5):951–958.
  • Russo R, Laguna F, Lopez-Velez R, et al. Visceral leishmaniasis in those infected with HIV: clinical aspects and other opportunistic infections. Ann Trop Med Parasitol. 2003;97(sup1):99–105.
  • Alvar J, Aparicio P, Aseffa A, et al. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008;21(2):334–359.
  • Jain K, Jain N. Vaccines for visceral leishmaniasis: A review. J Immunol Methods. 2015;422:1–12.
  • Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Rev Microbiol. 2007;5(11supp):S7.
  • Gillespie PM, Beaumier CM, Strych U, et al. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34(26):2992–2995.
  • Mutiso JM, Macharia JC, Kiio MN, et al. Development of Leishmania vaccines: predicting the future from past and present experience. J Biomed Res. 2013;27(2):85.
  • Roatt BM, Aguiar-Soares R, Reis LES, et al. A vaccine therapy for canine visceral leishmaniasis promoted significant improvement of clinical and immune status with reduction in parasite burden. Front Immunol. 2017;8:217.
  • Cantacessi C, Dantas-Torres F, Nolan MJ, et al. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31(3):100–108.
  • Kumari S, Kumar A, Samant M, et al. Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics. Curr Drug Targets. 2008;9(11):938–947.
  • Furman D, Davis MM. New approaches to understanding the immune response to vaccination and infection. Vaccine. 2015;33(40):5271–5281.
  • Lima B, Fialho L Jr, Pires S, et al. Immunoproteomic and bioinformatic approaches to identify secreted Leishmania amazonensis, L. braziliensis, and L. infantum proteins with specific reactivity using canine serum. Vet Parasitol. 2016;223:115–119.
  • Ejazi SA, Bhattacharyya A, Choudhury ST, et al. Immunoproteomic identification and characterization of leishmania membrane proteins as non-invasive diagnostic candidates for clinical visceral leishmaniasis. Sci Rep. 2018;8(1):12110.
  • Forgber M, Basu R, Roychoudhury K, et al. Mapping the antigenicity of the parasites in Leishmania donovani infection by proteome serology. PloS One. 2006;1(1):e40.
  • Rochette A, Raymond F, Corbeil J, et al. Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol. 2009;165(1):32–47.
  • Dea‐Ayuela MA, Rama‐Iñiguez S, Bolás‐Fernández F. Proteomic analysis of antigens from Leishmania infantum promastigotes. Proteomics. 2006;6(14):4187–4194.
  • Lynn MA, Marr AK, McMaster WR. Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions. J Proteomics. 2013;82:179–192.
  • Lima B, Pires S, Fialho L Jr, et al. A proteomic road to acquire an accurate serological diagnosis for human tegumentary leishmaniasis. J Proteomics. 2017;151:174–181.
  • Rashidi S, Kalantar K, Hatam G. Achievement amastigotes of Leishmania infantum and investigation of pathological changes in the tissues of infected golden hamsters. J Parasit Dis. 2018;42(2):187–195.
  • Costa MM, Andrade HM, Bartholomeu DC, et al. Analysis of Leishmania chagasi by 2-D difference gel eletrophoresis (2-D DIGE) and immunoproteomic: identification of novel candidate antigens for diagnostic tests and vaccine. J Proteome Res. 2011;10(5):2172–2184.
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat Acad Sci. 1979;76(9):4350–4354.
  • Mojtahedi Z, Clos J, Kamali-Sarvestani E. Leishmania major: identification of developmentally regulated proteins in procyclic and metacyclic promastigotes. Exp Parasitol. 2008;119(3):422–429.
  • Brandau S, Dresel A, Clos J. High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. Biochem J. 1995;310(1):225–232.
  • Pérez-Morales D, Espinoza B. The role of small heat shock proteins in parasites. Cell Stress Chaperones. 2015;20(5):767–780.
  • Hombach A, Ommen G, MacDonald A, et al. A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani. J Cell Sci. 2014;127(21):4762–4773.
  • DA SILVA EC R, Cd MOURAPMF, Andrade PP. Partial purification, immunogenicity and putative new localization of a native Leishmania heat shock protein 70. Parasitología Latinoam. 2008;63(1–2–3–4):4–11.
  • Moreira MEC, Del Portillo HA, Milder RV, et al. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol. 1996;167(2):305–313.
  • Requena JM, Montalvo AM, Fraga J. Molecular chaperones of Leishmania: central players in many stress-related and-unrelated physiological processes. Biomed Res Int. 2015;2015.
  • Horwich A, Hartl F, Cheng M. Role of HSP60 in folding/assembly of mitochondrial proteins. In: Heat Shock. Berlin: Springer; 1991. p. 165–173.
  • Colineau L, Clos J, Moon K-M, et al. Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages. Med Microbiol Immunol. 2017;206(3):235–257.
  • Alexandratos A, Clos J, Samiotaki M, et al. The loss of virulence of histone H 1 overexpressing L eishmania donovani parasites is directly associated with a reduction of HSP 83 rate of translation. Mol Microbiol. 2013;88(5):1015–1031.
  • Okwor I, Uzonna J. Vaccines and vaccination strategies against human cutaneous leishmaniasis. Hum Vaccines. 2009;5(5):291–301.
  • Celeste B, Angel SO, Castro L, et al. Leishmania infantum heat shock protein 83 for the serodiagnosis of tegumentary leishmaniasis. Braz J Med Biol Res. 2004;37(11):1591–1593.
  • Montalvo-Álvarez AM, Folgueira C, Carrión J, et al. The Leishmania HSP20 is antigenic during natural infections, but, as DNA vaccine, it does not protect BALB/c mice against experimental L. amazonensis infection. Biomed Res Int. 2008;2008. DOI: 10.1155/2008/695432
  • Rey-Ladino JA, Joshi PB, Singh B, et al. Leishmania major: molecular cloning, sequencing, and expression of theheat shock protein 60Gene reveals unique carboxy terminal peptide sequences. Exp Parasitol. 1997;85(3):249–263.
  • Muta T, Kang D, Kitajima S, et al. p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation. J Biol Chem. 1997;272(39):24363–24370.
  • Ghebrehiwet B, Peerschke EI. Structure and function of gC1q-R: a multiligand binding cellular protein. Immunobiology. 1998;199(2):225–238.
  • Ghebrehiwet B, Lim B-L, Peerschke E, et al. Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular” heads” of C1q. J Exp Med. 1994;179(6):1809–1821.
  • Feng X, Feistel T, Buffalo C, et al. Remodeling of protein and mRNA expression in Leishmania mexicana induced by deletion of glucose transporter genes. Mol Biochem Parasitol. 2011;175(1):39–48.
  • Chavali AK, Whittemore JD, Eddy JA, et al. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol. 2008;4(1):177.
  • Bringaud F, Peris M, Zen KH, et al. Characterization of two nuclear-encoded protein components of mitochondrial ribonucleoprotein complexes from Leishmania tarentolae. Mol Biochem Parasitol. 1995;71(1):65–79.
  • Brocker C, Lassen N, Estey T, et al. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem. 2010;285(24):18452–18463.
  • Magalhães RD, Duarte MC, Mattos EC, et al. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis. 2014;8(4):e2764.
  • Saxena A, Lahav T, Holland N, et al. Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol. 2007;152(1):53–65.
  • Clay MR, Tabor M, Owen JH, et al. Single‐marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck. 2010;32(9):1195–1201.
  • Jardim A, Hanson S, Ullman B, et al. Cloning and structure-function analysis of the Leishmania donovani kinetoplastid membrane protein-11. Biochem J. 1995;305(1):315–320.
  • Gwynne J, Brewer H, Edelhoch H. The molecular behavior of apoA-I in human high density lipoproteins. J Biol Chem. 1975;250(6):2269–2274.
  • Berberich C, Requena JM, Alonso C. Cloning of genes and expression and antigenicity analysis of theleishmania infantumKMP-11 Protein. Exp Parasitol. 1997;85(1):105–108.
  • Jardim A, Funk V, Caprioli R, et al. Isolation and structural characterization of the Leishmania donovani kinetoplastid membrane protein-11, a major immunoreactive membrane glycoprotein. Biochem J. 1995;305(1):307–313.
  • Fuertes MA, Berberich C, Lozano RM, et al. Folding stability of the kinetoplastid membrane protein‐11 (KMP‐11) from Leishmania infantum. Eur J Biochem. 1999;260(2):559–567.
  • Lugli EB, Pouliot M, MdPM P, et al. Characterization of primate trypanosome lytic factors. Mol Biochem Parasitol. 2004;138(1):9–20.
  • Blattner J, Swinkels B, Dörsam H, et al. Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a COOH-terminal microbody targeting signal. J Cell Biol. 1992;119(5):1129–1136.
  • McKoy G, Badal M, Prescott Q, et al. Characterisation of phosphoglycerate kinase genes in Leishmania major and evidence for the absence of a third closely related gene or isoenzyme. Mol Biochem Parasitol. 1997;90(1):169–181.
  • Blattner J, Helfert S, Michels P, et al. Compartmentation of phosphoglycerate kinase in Trypanosoma brucei plays a critical role in parasite energy metabolism. Proc Nat Acad Sci. 1998;95(20):11596–11600.
  • Azevedo A, Toledo JS, Defina T, et al. Leishmania major phosphoglycerate kinase transcript and protein stability contributes to differences in isoform expression levels. Exp Parasitol. 2015;159:222–226.
  • Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, et al. Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp Parasitol. 2013;135(2):344–349.
  • Ben NK, De GM, Louzir H, et al. Leishmania major protein disulfide isomerase as a drug target: enzymatic and functional characterization. Parasitol Res. 2012;110(5):1911–1917.
  • Amit A, Chaudhary R, Yadav A, et al. Evaluation of Leishmania donovani disulfide isomerase as a potential target of cellular immunity against visceral leishmaniasis. Cell Immunol. 2014;289(1–2):76–85.
  • Naidoo N. ER and aging—protein folding and the ER stress response. Ageing Res Rev. 2009;8(3):150–159.
  • Hong B, Soong L. Identification and enzymatic activities of four protein disulfide isomerase (PDI) isoforms of Leishmania amazonensis. Parasitol Res. 2008;102(3):437–446.
  • Jaiswal AK, Khare P, Joshi S, et al. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis. PLoS One. 2014;9(9):e108556.
  • Gupta SK, Sisodia BS, Sinha S, et al. Proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble antigens of Leishmania donovani promastigotes. Proteomics. 2007;7(5):816–823.
  • Amit A, Dikhit MR, Singh AK, et al. Immunization with Leishmania donovani protein disulfide isomerase DNA construct induces Th1 and Th17 dependent immune response and protection against experimental visceral leishmaniasis in Balb/c mice. Mol Immunol. 2017;82:104–113.
  • Joshi S, Yadav NK, Rawat K, et al. Immunogenicity and protective efficacy of T-cell epitopes derived from potential Th1 stimulatory proteins of Leishmania (Leishmania) donovani. Front Immunol. 2019;10. DOI:10.3389/fimmu/2019.00288
  • Kushawaha PK, Gupta R, Tripathi CDP, et al. Evaluation of Leishmania donovani protein disulfide isomerase as a potential immunogenic protein/vaccine candidate against visceral Leishmaniasis. PLoS One. 2012;7(4):e35670.
  • Achour YB, Chenik M, Louzir H, et al. Identification of a disulfide isomerase protein of Leishmania major as a putative virulence factor. Infect Immun. 2002;70(7):3576–3585.
  • Khalaf NB, De Muylder G, Louzir H, et al. Leishmania major protein disulfide isomerase as a drug target. Parasitol Res. 2012;110(5):1911–1917.
  • Grewal T, Enrich C. Annexins—modulators of EGF receptor signalling and trafficking. Cell Signal. 2009;21(6):847–858.
  • Siever DA, Erickson HP. Extracellular annexin II. Int J Biochem Cell Biol. 1997;29(11):1219–1223.
  • Wasmuth J, Daub J, Peregrín-Alvarez JM, et al. The origins of apicomplexan sequence innovation. Genome Res. 2009;19(7):1202–1213.
  • van Zandbergen G, Bollinger A, Wenzel A, et al. Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proc Nat Acad Sci. 2006;103(37):13837–13842.
  • HALd S, GSd L, Boité MC, et al. Expression of annexin A1 in Leishmania-infected skin and its correlation with histopathological features. Rev Soc Bras Med Trop. 2015;48(5):560–567.
  • Oliveira LG, Souza-Testasicca MC, Vago JP, et al. Annexin A1 is involved in the resolution of inflammatory responses during Leishmania braziliensis infection. J Immunol. 2017;198(8):3227–3236.
  • Perretti M, Christian H, Wheller SK, et al. Annexin I is stored within gelatinase granules of human neutrophil and mobilized on the cell surface upon adhesion but not phagocytosis. Cell Biol Int. 2000;24(3):163–174.
  • Perretti M, Gavins FN. Annexin 1: an endogenous anti-inflammatory protein. Physiology. 2003;18(2):60–64.
  • Hofmann A, Osman A, Leow CY, et al. Parasite annexins–new molecules with potential for drug and vaccine development. Bioessays. 2010;32(11):967–976.
  • Berger LC, Wilson J, Wood P, et al. Methionine regeneration and aspartate aminotransferase in parasitic protozoa. J Bacteriol. 2001;183(15):4421–4434.
  • Vernal J, Cazzulo JJ, Nowicki C. Isolation and partial characterization of a broad specificity aminotransferase from Leishmania mexicana promastigotes. Mol Biochem Parasitol. 1998;96(1–2):83–92.
  • Gafan C, Wilson J, Berger LC, et al. Characterization of the ornithine aminotransferase from Plasmodium falciparum. Mol Biochem Parasitol. 2001;118(1):1–10.
  • Vieira L, Lavan A, Dagger F, et al. The role of anions in pH regulation of Leishmania major promastigotes. J Biol Chem. 1994;269(23):16254–16259.
  • Bayrhuber M, Meins T, Habeck M, et al. Structure of the human voltage-dependent anion channel. Proc Nat Acad Sci. 2008;105(40):15370–15375.
  • Lawen A, Ly JD, Lane DJ, et al. Voltage-dependent anion-selective channel 1 (VDAC1)—a mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane. Int J Biochem Cell Biol. 2005;37(2):277–282.
  • Shoshan-Barmatz V, Israelson A, Brdiczka D, et al. The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des. 2006;12(18):2249–2270.
  • Ponte-Sucre A, Campos Y, Fernandez M, et al. Leishmania sp.: growth and survival are impaired by ion channel blockers. Exp Parasitol. 1998;88(1):11–19.
  • Thuaud F, Ribeiro N, Nebigil CG, et al. Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol. 2013;20(3):316–331.
  • Almeida R, Gilmartin BJ, McCann SH, et al. Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol. 2004;136(1):87–100.
  • Jain R, Ghoshal A, Mandal C, et al. Leishmania cell surface prohibitin: role in host–parasite interaction. Cell Microbiol. 2010;12(4):432–452.
  • Cruz-Bustos T, Ibarrola-Vannucci AK, Díaz-Lozano I, et al. Characterization and functionality of two members of the SPFH protein superfamily, prohibitin 1 and 2 in Leishmania major. Parasit Vectors. 2018;11(1):622.
  • Garin J, Diez R, Kieffer S, et al. The phagosome proteome: insight into phagosome functions. J Cell Biol. 2001;152(1):165–180.
  • Dias DS, Ribeiro PA, Martins VT, et al. Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cell Immunol. 2018;323:59–69.
  • Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27(5):305–318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.