1,819
Views
1
CrossRef citations to date
0
Altmetric
Article

Cellular mechanisms regulating synthetic sex ratio distortion in the Anopheles gambiae germline

ORCID Icon, , , , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • World malaria report 2018. Geneva: World Health Organization; 2018.
  • Newton ME, Wood RJ, Southern DI. A cytogenetic analysis of meiotic drive in the mosquito, Aedes aegypti (L.). Genetica. 1976;46:297–318.
  • Sweeny TL, Barr AR. Sex ratio distortion caused by meiotic drive in a mosquito, Culex pipiens L. Genetics. 1978;88:427–446.
  • Hamilton WD. Extraordinary sex ratios. Science. 1967;156:477–488.
  • Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2003;270:921–928.
  • Collins FH, Besansky NJ, Mendez MA, et al. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37–41.
  • Marchi A, Pili E. Ribosomal RNA genes in mosquitoes: localization by fluorescence in situ hybridization (FISH). Heredity (Edinb). 1994;72:599–605.
  • Hall AB, Papathanos P-A, Sharma A, et al. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proc Natl Acad Sci. 2016;113:201525164.
  • Galizi R, Doyle LA, Menichelli M, et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014;5:1–8.
  • Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet. 2008;4:e1000291.
  • Galizi R, Hammond A, Kyrou K, et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep. 2016;6:31139.
  • Facchinelli L, North AR, Collins CM, et al. Large-cage assessment of a transgenic sex-ratio distortion strain on populations of an African malaria vector. Parasit Vectors. 2019;12:70.
  • Huang Y, Magori K, Lloyd AL, et al. Introducing desirable transgenes into insect populations using Y-linked meiotic drive - a theoretical assessment. Evolution (NY). 2007;61:717–726.
  • Alcalay Y, Fuchs S, Galizi R, et al. The potential for a released autosomal X-shredder becoming a driving-Y chromosome and invasively suppressing wild populations of malaria mosquitoes. bioRxiv. 2019:860551. DOI:10.1101/860551
  • Taxiarchi C, Kranjc N, Kriezis A, et al. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Sci Rep. 2019;9. DOI:10.1038/s41598-019-51181-1
  • Cloutier JM, Turner JMA. Meiotic sex chromosome inactivation. Curr Biol. 2010;20:R962–3.
  • Gantz VM, Jasinskiene N, Tatarenkova O, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci. 2015;2015:21077.
  • Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.
  • Burt A. Heritable strategies for controlling insect vectors of disease. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130432.
  • Kyrou K, Hammond AM, Galizi R, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–1066.
  • Simoni A, Hammond AM, Beaghton AK, et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. 2020:1–7. DOI:10.1038/s41587-020-0508-1
  • Larracuente AM, Presgraves DC. The selfish segregation distorter gene complex of Drosophila melanogaster. Genetics. 2012;192:33–53.
  • Jaramillo-Lambert A, Harigaya Y, Vitt J, et al. Meiotic errors activate checkpoints that improve gamete quality without triggering apoptosis in male germ cells. Curr Biol. 2010;20:2078–2089.
  • Snook RR, Markow TA, Karrt TL. Functional nonequivalence of sperm in Drosophila pseudoobscura. Proc Natl Acad Sci. 1994;91:11222–11226.
  • Snook RR, Karr TL. Only long sperm are fertilization-competent in six sperm-heteromorphic Drosophila species. Curr Biol. 1998;8:291–294.
  • Swallow JG, Wilkinson GS. The long and short of sperm polymorphisms in insects. Biol Rev Camb Philos Soc. 2002;77:S1464793101005851.
  • Voordouw MJ, Koella JC, Hurd H. Intra-specific variation of sperm length in the malaria vector Anopheles gambiae: males with shorter sperm have higher reproductive success. Malar J. 2008;7:214.
  • Seol J-H, Shim EY, Lee SE. Microhomology-mediated end joining: good, bad and ugly. Mutat Res/Fundam Mol Mech Mutagen. 2018;809:81–87.
  • Timoshevskiy VA, Sharma A, Sharakhov IV, et al. Fluorescent in situ hybridization on mitotic chromosomes of mosquitoes. J Vis Exp. 2012:e4125. DOI:10.3791/4215
  • Ekechukwu NE, Baeshen R, Traorè SF, et al. Heterosis increases fertility, fecundity, and survival of laboratory-produced F1 hybrid males of the malaria mosquito Anopheles coluzzii. G3 (Bethesda). 2015;5:2693–2709.
  • Ekechukwu NE, Tripet F. Current versus future reproductive investment adaptive responses in adult Anopheles coluzzii malaria mosquitoes: hydric-stressed males give it all. Parasit Vectors. 2019;12:377.
  • Pinello L, Canver MC, Hoban MD, et al. Analyzing CRISPR genome editing experiments with CRISPResso HHS public access author manuscript. Nat Biotechnol. 2016;34:695–697.
  • Pearson K. On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos Mag. 1900;50:157–175.