4,678
Views
8
CrossRef citations to date
0
Altmetric
Review

A review of mechanistic models of viral dynamics in bat reservoirs for zoonotic disease

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Calisher CH, Childs JE, Field HE, et al. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19(3):531–545.
  • Wang L, Anderson DE, Mackenzie JS, Merson MH. From Hendra to Wuhan: what has been learned in responding to emerging zoonotic viruses. Lancet. 2020;6736(20):2019–2020. Elsevier Ltd.
  • WHO. Coronavirus disease (COVID-2019) situation reports. 2020 [cited 2020 Jun 30]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  • Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nature. 2020;26:450–455.
  • Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020. Springer US. DOI:https://doi.org/10.1038/s41564-020-0771-4.
  • Zhou H, Chen X, Hu T, et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol. 2020;30(11):2196–2203.e3. Elsevier Ltd.
  • Zhou P, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. DOI:https://doi.org/10.1038/s41586-020-2012-7.
  • Liao Y, Wei W, Cheung WY, Li W, Li L, Leung GM, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020;1–6.
  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269.
  • Olival K, Hayman D. Filoviruses in bats: current knowledge and future directions. Viruses. 2014;6(4):1759–1788.
  • Plowright RK, Peel AJ, Streicker DG, et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl Trop Dis. 2016;10(8):e0004796.
  • Schountz T, Baker ML, Butler J, et al. Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol. 2017;8(September):Article 1098.
  • Ross R. Some a priori pathometric equations. Br Med J. 1915;1(2830):546–547.
  • Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc London A. 1927;115:700–721.
  • Lessler J, Azman AS, Grabowski MK, Salje H, Rodriguez-barraquer I. Trends in the mechanistic and dynamic modeling of infectious diseases. Curr Epidemiol Rep. 2016;3:212–222.
  • Chinazzi M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368(6489):395–400.
  • Zhang Q  Perra N, Perrotta D, Tizzoni M, Paolotti D, Vespignani A. Forecasting seasonal influenza fusing digital indicators and a mechanistic disease model. 26th International World Wide Web Conference, WWW 2017; May 2019; 2017;(May 2019):311–9. DOI: https://doi.org/10.1145/3038912.3052678.
  • Brook CE, Dobson AP. Bats as “special” reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015;23(3):172–180.
  • Luis AD, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B. 2013;280(20122753):1–9.
  • Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017. Publishing Group. DOI:https://doi.org/10.1038/nature22975.
  • Lloyd-Smith JO, George D, Pepin KM, et al. Epidemic dynamics at the human-animal interface. Science. 2009;326(5958):1362–1367.
  • Allen LJS, Van Den Driessche P. The basic reproduction number in some discrete-time epidemic models. J Differ Equations Appl. 2008;14(10–11):1127–1147.
  • Diekmann O, Heesterbeek JAP, Metz JA. On the definition and computation of the basic reproduction ratio R0 in models for infectious diseases in heterogenous populations. J Math Biol. 1990;28:365–382.
  • Klepac P, Caswell H. The stage-structured epidemic: linking disease and demography with a multi-state matrix approach model. Theor Ecol. 2011;4(3):301–319.
  • Brook CE, Ranaivoson HC, Broder CC, Cunningham AA, Héraud J-M, Peel AJ, et al. Disentangling serology to elucidate henipa- and filovirus transmission in Madagascar fruit bats. J Anim Ecol. 2019;1–16. DOI:https://doi.org/10.1111/1365-2656.12985.
  • Oli M, Venkataraman M, Brown MB. Population dynamics of infectious diseases: a discrete time model. Ecol Modell. 2006;198:183–194.
  • Peel AJ, Baker KS, Hayman DTS, et al. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci Rep. 2018;8(1):3859.
  • Dimitrov DT, Hallam TG, Rupprecht CE, et al. Integrative models of bat rabies immunology, epizootiology and disease demography. J Theor Biol. 2007;245:498–509.
  • Dimitrov DT, Hallam TG, Rupprecht CE, et al. Adaptive modeling of viral diseases in bats with a focus on rabies. J Theor Biol. 2008;255:69–80.
  • Dimitrov DT, King AA. Modeling evolution and persistence of neurological viral diseases in wild populations. Math Biosci Eng. 2008;5(4):729–741.
  • Brook CE, Boots M, Chandran K, et al. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. eLife. 2020;9:e48401.
  • Amengual B, Bourhy H, López-Roig M, Serra-Cobo J. Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS One. 2007;2(6):e566.
  • Pons-Salort M, Serra-Cobo J, Jay F, et al. Insights into persistence mechanisms of a zoonotic virus in bat colonies using a multispecies metapopulation model. PloS One. 2014;9(4):e95610.
  • Bakker KM, Rocke TE, Osorio JE, et al. Fluorescent biomarkers demonstrate prospects for spreadable vaccines to control disease transmission in wild bats. Nat Ecol Evol. 2019;3:1697–1704. Springer US.
  • Afonso CL, Amarasinghe GK, Bányai K, et al. Taxonomy of the order Mononegavirales: update 2016. Arch Virol. 2016;161:2351–2360.
  • Markotter W, Coertse J. Bat lyssaviruses. Sci Tech Rev Office Int Des Epizooties. 2018;37(2):385–400.
  • Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 2015;9(4):1–20.
  • Messenger SL, Smith JS, Rupprecht CE. Emerging epidemiology of bat-associated cryptic cases of rabies in humans in the United States. Emerging Infect. 2002;35:738–747.
  • Banyard AC, Davis A, Gilbert AT, Markotter W. Bat rabies. In: abies: scientific basis of the disease and its management. 4th ed. London (UK) Elsevier Inc.; 2000. p. 231–276. DOI:https://doi.org/10.1016/b978-0-12-818705-0.00007-8.
  • George DB, Webb CT, Farnsworth ML, et al. Host and viral ecology determine bat rabies seasonality and maintenance. Proc Nat Acad Sci. 2011;108(25):10208–10213.
  • Blackwood JC, Streicker DG, Altizer S, et al. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc Nat Acad Sci. 2013;110(51):20837–20842.
  • Streicker DG, Recuenco S, Valderrama W, et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proc R Soc B. 2012;279(1742):3384–3392.
  • Colombi D, Serra-Cobo J, Métras R, Apoll A, Poletto C, Lópe M, et al. Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: insights from a modeling study. Sci Rep. 2019;9:537.
  • Franka R, Johnson N, Müller T, et al. Susceptibility of North American big brown bats (Eptesicus fuscus) to infection with European bat lyssavirus type 1. J Gen Virol. 2008;89(8):1998–2010.
  • Freuling C, Vos A, Johnson N, et al. Experimental infection of serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a. J Gen Virol. 2009;90(10):2493–2502.
  • Davis PL, Holmes EC, Larrous F, Van der Poel WHM, Tjørnehøj K, Alonso WJ, et al. Phylogeography, population dynamics, and molecular evolution of European bat lyssaviruses. J Virol. 2005;79(16):10487–10497.
  • Hayman DTS, Luis AD, Restif O, et al. Maternal antibody and the maintenance of a lyssavirus in populations of seasonally breeding African bats. PloS One. 2018;13(6):e0198563.
  • Centers for Disease Control and Prevention. US, Filoviridae. 2018.
  • Guth S, Visher E, Boots M, et al. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal – human interface. Phil Trans R Soc B. 2019;374(1782):20190296.
  • Amman BR, Carroll SA, Reed ZD, et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012;8(10):e1002877.
  • Towner JS, Amman BR, Sealy TK, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009;5(7):e1000536.
  • Leroy EM, Kumulungui B, Pourrut X, et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438(7068):575–576.
  • Pourrut X, Kumulungui B, Wittmann T, et al. The natural history of Ebola virus in Africa. Microbes Infect. 2005;7(7–8):1005–1014.
  • Berge T, Lubuma J, et al. Dynamics of host-reservoir transmission of Ebola with spillover potential to humans. Electron J Qual Theory Differ Equ. 2018;(14):1–32.
  • Berge T, Bowong S, Lubuma J, et al. Modeling Ebola Virus Disease transmissions with reservoir in a complex virus life ecology. Math Biosci Eng. 2018;15(1):21–56.
  • Buceta J, Johnson K. Modeling the Ebola zoonotic dynamics: interplay between enviroclimatic factors and bat ecology. PLoS One. 2017;12(6):e0179559.
  • Rhoubari ZEL, Besbassi H, Hattaf K, Yousfi N. Mathematical modeling of Ebola Virus Disease in bat population. Discrete Dyn Nat Soc. 2018;5104524.
  • Hayman DTS. Biannual birth pulses allow filoviruses to persist in bat populations. Proc R Soc B. 2015;282(20142591). DOI:https://doi.org/10.1098/rspb.2014.2591.
  • Paweska JT, et al. Lack of Marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats. J Infect Dis. 2015;1–10. DOI:https://doi.org/10.1093/infdis/jiv132.
  • Schuh AJ, Amman BR, Jones MEB, Sealy TK, Uebelhoer LS, Spengler JR, et al. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat Commun. 2017;8:14446. Nature Publishing Group.
  • Rima B, Balkema-Buschmann A, Dundon WG, et al. ICTV virus taxonomy profile: Paramyxoviridae. J Gen Virol. 2019;100:1593–1594.
  • Halpin K, Young PL, Field HE, et al. Isolation of Hendra virus from pteropid bats: A natural reservoir of Hendra virus. J Gen Virol. 2000;81(Pt8):1927–1932.
  • Anderson DE, Islam A, Crameri G, et al. Isolation and full-genome characterization of Nipah Viruses from Bats, Bangladesh. Emerg Infect Dis. 2019;25(1):166–170.
  • Marsh GA, de Jong C, Barr JA, et al. Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog. 2012;8(8):e1002836.
  • Drexler JF, Corman VM, Müller MA, et al. Bats host major mammalian paramyxoviruses. Nat Commun. 2012;3:796.
  • Wu Z, Yang L, Yang F, et al. Novel Henipa-like virus, Mojiang paramyxovirus, in rats, China. Emerg Infect Dis. 2012;20(6):1064–1066.
  • Weatherman S, Feldmann H, De WE. Transmission of henipaviruses. Curr Opin Virol. 2018;28:7–11. Elsevier B.V.
  • Pernet O, Schneider BS, Beaty SM, et al. Evidence for henipavirus spillover into human populations in Africa. Nat Commun. 2014;5:5342. Nature Publishing Group.
  • Plowright RK, Foley P, Field HE, et al. Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proc R Soc B. 2011;278(1725):3703–3712.
  • Wang -H-H, Kung NY, Grant WE, et al. Recrudescent infection supports Hendra virus persistence in Australian flying-fox populations. PloS One. 2013;8(11):e80430.
  • Glennon EE, Becker DJ, Peel AJ, et al. What is stirring in the reservoir? Modelling mechanisms of henipavirus circulation in fruit bat hosts. Phil Trans R Soc B. 2019;374:20190021.
  • Peel AJ, Wells K, Giles J, et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg Microbes Infect. 2019;8(1):1314–1323.
  • Wong ACP, Li X, Lau S, et al. Global epidemiology of bat coronaviruses. Viruses. 2019;11(174):v11020174.
  • Woo PCY, Lau SKP, Huang Y, et al. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med. 2009;234(10):1117–1127.
  • Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490–502. Elsevier Ltd.
  • Anthony SJ, Johnson CK, Greig DJ, et al. Global patterns in coronavirus diversity. Virus Evol. 2017;3(1):1–15.
  • Chen TM, Rui J, Wang Q-P, et al. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty. 2020;9(1):1–8.
  • Jeong J, SMITH CS, PEEL AJ, et al. Persistent infections support maintenance of a coronavirus in a population of Australian bats (Myotis macropus). Epidemiol Infect. 2017;145:2053–2061.
  • Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y et al. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa, and virus abbreviations. Archives of Virology. 2010; 155(12):2083–103
  • Negredo A, Palacios G, Vázquez-Morón S, González F, Dopazo H, Molero F, et al. Discovery of an Ebolavirus-Like Filovirus in Europe. PLoS Pathogens. 2011;7(10)
  • Turmelle AS, Jackson FR, Green D, et al. Host immunity to repeated rabies virus infection in big brown bats. J Gen Virol. 2010;91(Pt 9):2360–2366.
  • Field H, de Jong C, Melville D, et al. Hendra virus infection dynamics in Australian fruit bats. PLoS ONE. 2011;6(12):8–13.
  • Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, Bryden WL, et al. Ecological dynamics of emerging bat virus spillover. Proc R Soc B. 2015;282(1798). DOI:https://doi.org/10.1098/rspb.2014.2124.
  • Sulkin SE, Allen R. Experimental rabies virus infection in bats: review. In: Baer GM, editor. The natural history of rabies. New York: Academic Press, Inc.; 1975. p. 99–114.
  • Jones M, Schuh A, Amman B, et al. Experimental inoculation of Egyptian Rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus Genera. Viruses. 2015;7(7):3420–3442.
  • Paweska JT, Jansen van Vuren P, Masumu J, et al. Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with Vero cells-adapted Hogan strain of Marburg virus. PloS One. 2012;7(9):e45479.
  • Schuh AJ, Amman BR, Sealy TK, et al. Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels. Sci Rep. 2017;7(1):1–7.
  • Behdenna A, Lembo T, Calatayud O, et al. Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system. Proc R Soc B. 2019;286(1899):20182772.
  • Cross PC, van Manen FT, Viana M, Almberg ES, Bachen D, Brandell EE, et al. Estimating distemper virus dynamics among wolves and grizzly bears using serology and Bayesian state-space models. Ecol Evol. 2018;8(17):8726–8735.
  • Funk S, Camacho A, Kucharski AJ, Eggo RM, Edmunds WJ. Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics. 2018;22:56–61. Elsevier B.V.
  • Restif O, Hayman DTS, Pulliam JRC, et al. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol Lett. 2012;15(10):1083–1094.
  • Muench H. Catalytic models in epidemiology. Boston, MA, USA: Harvard University Press; 1959.
  • Brunet-Rossinni AK, Wilkinson GS. Methods for age estimation and the study of senescence in bats. Ecological and behavioral methods for the study of bats. 2003 [cited 2009 Dec 11]. p. 315–326. Available from: http://www.life.umd.edu/faculty/wilkinson/Brunet-Rossini_ch15.pdf.
  • Wilkinson GS, et al. Genome methylation predicts age and longevity of bats. bioRxiv. 2020.
  • Wright PGR, Mathews F, Schofield H, Morris C, Burrage J, Smith A, et al. Application of a novel molecular method to age free-living wild Bechstein’s bats. Mol Ecol Resour. 2018;18(6):1374–1380.
  • Kerth G, Ebert C, Schmidtke C. Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats. Proc R Soc B. 2006;273(1602):2785–2790.