273
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite

, , , , ORCID Icon &

References

  • Sundar S, Singh A, Rai M, et al. Single-dose indigenous liposomal amphotericin B in the treatment of indian visceral Leishmaniasis: a phase 2 study. Am J Trop Med Hyg. 2015;92(3):513–517.
  • Thakur CP, Ahmed S. Observations on amphotericin B treatment of kala-azar given in a rural set up in Bihar, India. Indian J Med Res. 2001;113:14–18.
  • Dhiman RC. Emerging vector-borne zoonoses: eco-epidemiology and public health implications in India. Front Public Health. 2014;30(2):168.
  • Khanra S, Datta S, Mondal D, et al. RFLPs of ITS, ITS1 and hsp70 amplicons and sequencing of ITS1 of recent clinical isolates of Kala-azar from India and Bangladesh confirms the association of L. tropica with the disease. Acta Trop. 2012;124(3):229–234.
  • Krayter L, Bumb RA, Azmi K, et al. Multilocus microsatellite typing reveals a genetic relationship but, also, genetic differences between Indian strains of Leishmania tropica causing cutaneous leishmaniasis and those causing visceral leishmaniasis. Parasites Vectors. 2014;7:123.
  • Greenwood B. The contribution of vaccination to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130433.
  • Jain K, Jain NK. Vaccines for visceral leishmaniasis: a review. J Immunol Methods. 2015;422:1–12.
  • Chakravarty J, Kumar S, Trivedi S, et al. Franco, A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1 + MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine. 2011;29(19):3531–3537.
  • Beaumier CM, Gillespie PM, Hotez PJ, et al. New vaccines for neglected parasitic diseases and dengue. Transl Res. 2013;162(3):144–155.
  • Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Devel Ther. 2018;12:25–40.
  • Gupta SK, Sisodia BS, Sinha S, et al. Proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble antigens of Leishmania donovani promastigot. Proteomics. 2007;7(5):816–823.
  • Kushawaha PK, Gupta R, Sundar S, et al. Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-γ and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. J Immunol. 2011;187(12):6417–6427.
  • Sinha AK, Singh P, Prakash A, et al. Putative drug and vaccine target identification in leishmania donovani membrane proteins using naive bayes probabilistic classifier. IEEE/ACM Trans Comput Biol Bioinform. 2017;14(1):204–211.
  • Martins VT, Lage DP, Duarte MC, et al. A new Leishmania-specific hypothetical protein, LiHyT, used as a vaccine antigen against visceral leishmaniasis. Acta Trop. 2015;154:73–81.
  • Ribeiro PAF, Dias DS, Lage DP, et al. Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection andits immunogenicity in humans. Cell Immunol. 2018;331:67–77.
  • Nagpal G, Usmani SS, Raghava GPS. A web resource for designing subunit vaccine against major pathogenic species of bacteria. Front Immunol. 2018;2(9):2280.
  • Scheiblhofer S, Laimer J, Machado Y, et al. Influence of protein fold stability on immunogenicity and its implications for vaccine design. Expert Rev Vaccines. 2017;16(5):479–489.
  • Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7(1):8285.
  • Pandey RK, Prajapati VK. Exploring sand fly salivary proteins to design multiepitope subunit vaccine to fight against visceral leishmaniasis. J Cell Biochem. 2018 Jan 29. DOI:https://doi.org/10.1002/jcb.26719.
  • Khan MAA, Ami JQ, Faisal K, et al. An immunoinformatic approach driven by experimental proteomics: in silico design of a subunit candidate vaccine targeting secretory proteins of Leishmania donovani amastigotes. Parasit Vectors. 2020;13(1):196.
  • Vakili B, Eslami M, Hatam GR, et al. Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int J Biol Macromol. 2018;120(PtA):1127–1139.
  • Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: host immunity and microbial persistence strategies. J Immunol Res. 2019;1356540.
  • Khatoon N, Ojha R, Mishra A, et al. Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism. Vaccine. 2018;36(42):6290–6300.
  • Kalita J, Padhi AK, Tripathi T. Designing a vaccine for fascioliasis using immunogenic 24kDa mu-class glutathione s-transferase. Infect Genet Evol. 2020a;83:104352.
  • Kalita P, Padhi AK, Zhang KYJ, et al. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog. 2020b;145:104236.
  • Adu-Bobie J, Capecchi B, Serruto D, et al. Two years into reverse vaccinology. Vaccine. 2003;21(7–8):605–610.
  • Caro-Gomez E, Gazi M, Goez Y, et al. Discovery of novel cross protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine. 2014;32(39):4968–4976.
  • Mehla K, Ramana J. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach. Mol Biosyst. 2016;12(3):890–901.
  • Bothina Gaafar BM, Sumaia Ali A, Yassir Almofti A. Immunoinformatics approach for multiepitope vaccine prediction from H, M, F, and N proteins of peste des petits ruminants virus. J Immunol Res. 2019;6124030.
  • Nirujogi RS, Pawar H, Milind P, et al. Moving from unsequenced to sequenced genome: reanalysis of the proteome of Leishmania donovani. J Proteomics. 2014;97:48–61.
  • Magnan CN, Zeller M, Kayala MA, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics. 2010;26(23):2936–2943.
  • Wang P, Sidney J, Dow C, et al. A systematic assessment of MHC Class II peptide binding predictions and evaluation of a consensus approach. PLoSComputBiol. 2008;4(4):e1000048.
  • Larsen MV, Lundegaard C, Lamberth K, et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics. 2017;8:424.
  • Calis JJ, Maybeno M, Greenbaum JA, et al. Properties of MHC class i presented peptides that enhance immunogenicity. PLoSComputBiol. 2013;9(10):e1003266.
  • Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40–48.
  • Dimitrov I, IBangov DR, Flower I. Doytchinova AllerTOP v.2–a server for in silico prediction of allergens. J Mol Model. 2014;20(6):2278.
  • Saha S, SRaghava GP. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006;3:W202–W211.
  • Kalita P, Lyngdoh DL, Padhi AK, et al. Development of multi-epitope driven subunit vaccine against Fasciola gigantica using immunoinformatics approach. Int J Biol Macromol. 2019;138:224–233.
  • McGuffin LJ, Bryson K, Jones DT. The PSIPRED Protein structure prediction server. Bioinformatics. 2000;16(4):404–409.
  • ällberg MK, Margaryan G, Wang S, et al. RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol. 2014;1137:17–27.
  • Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;1(2):255–278.
  • Schneidman-Duhovny D, Inbar Y, Nussinov R, et al. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33:W363–W370.
  • Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis. 2017;11(12):e0006052.
  • Moafi M, Rezvan H, Sherkat R, et al. Leishmania vaccines entered in clinical trials: a review of literature. Int J Prev Med. 2019;7:95.
  • Zheng J, Lin X, Wang X. In silico analysis of epitope-based vaccine candidates against hepatitis B virus polymerase protein. Viruses. 2017;9:112.
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–273.
  • Osanya A, Song E-H, Metz K. Pathogen-derived oligosaccharides improve innate immune response to intracellular parasite infection. Am J Pathol. 2011;179(3):1329–1337.
  • Marilia Faria S, Flavia C, Reis G, et al. Toll-like receptors in leishmania infections: guardians or promoters? J Parasitol Res. 2012; Vol 2012; 930257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.